Description Usage Arguments Details Value Author(s) See Also Examples
Compute the marker medians, coefficients of variation and observations counts for cluster annoated FCS files.
| 1 2 | SPADE.markerMedians(files, num.clusters, cols = NULL, arcsinh_cofactor=NULL, transforms=flowCore::arcsinhTransform(a=0, b=0.2), cluster_cols=NULL, comp=TRUE)
SPADE.annotateMarkers(files, cols = NULL, arcsinh_cofactor = 5)
 | 
| files | Name of input FCS file or vector of input FCS file names. FCS files must have "cluster" column. | 
| num.clusters | Number of clusters. Note not all clusters need to be present in all files. | 
| cols | Usually a vector of strings specifying the columns to be used in the density calculation, e.g., c("(Cd110)D","(Cs111)D"). Strings will be matched against the parameter names extracted from the FCS file. The default=NULL will use all parameters. | 
| arcsinh_cofactor | DEPRECATED. Cofactor used in arcsinh transform  | 
| transforms | Transform object to apply to data. A single transform object will be applied to all channels. To apply different transforms to specific channels use a named vector of transform objects (where names are parameter names). | 
| cluster_cols | A vector of strings specifying columns that should be marked as having been used in clustering | 
| comp | Apply compensation matrix if present in SPILL or SPILLOVER keywords | 
SPADE.annotateMarkers is deprecated.
List with:
| count | Matrix of observation count for clusters | 
| percenttotal | Matrix of percent of total number of cells [0-100] in each cluster | 
| medians | Matrix of medians for specified columns | 
| cvs | Matrix of coefficient of variation (CV), 100*sd(data)/abs(mean(data)), for specified columns | 
Michael Linderman
SPADE.addClusterToFCS, SPADE.annotateGraph
| 1 2 3 4 5 6 7 8 9 10 11 12 | 	# Not run
	## Load two-parameters sample data included in package
	#data_file_path = paste(installed.packages()["spade","LibPath"],"spade","extdata","SimulatedRawData.fcs",sep=.Platform$file.sep)
	## Run basic SPADE analyses, clustering on two parameters. 
	#output_dir <- tempdir()
	#SPADE.driver(data_file_path, out_dir=output_dir, cluster_cols=c("marker1","marker2"))
	## Compute medians, counts and other parameters from processed files
	#upsampled_file_path <- paste(output_dir,.Platform$file.sep,basename(data_file_path),".density.fcs.cluster.fcs",sep="")
	#mst_graph <- igraph:::read.graph(paste(output_dir,"mst.gml",sep=.Platform$file.sep),format="gml")
	#anno <- SPADE.markerMedians(upsampled_file_path, igraph:::vcount(mst_graph), cols = c("marker1","marker2"))
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.