Description Usage Arguments Details Value Author(s) References See Also Examples
This function performs location normalization on cDNA micoroarray. It
operates on class marrayRaw
or
class marrayNorm
. It allows the
user to choose from a set of three basic normalization procedures.
1 |
x.fun |
Name of accessor method for spot intensity, usually |
y.fun |
Name of accessor method for spot statistics, usually the log-ratio |
z.fun |
Name of accessor method for spot statistic used to
stratify the data, usually a layout parameter,
e.g. |
subset |
A "logical" or "numeric" vector indicating the subset of points used to compute the normalization values. |
fun |
Character string specifying the normalization procedure:
|
... |
Miscs arguments to be passed in |
Normalization is typically performed on the expression ratios of cDNA
microarray data, using the function specified by argument
fun
. Currently, this function is to be chosen from:
medfit
(median), rlmfit
(rlm) and
loessfit
(loess). When z.fun
is provided as a character
string, for example, maPrintTip
, the normalization procedure is
operated within each print-tip of the slide.
The function fitWithin
returns a function(F) with
bindings for x.fun
, y.fun
, z.fun
, subset
and fun
. When the function F is evaluated with an object
of class marrayNorm
or
marrayRaw
, it carries out
normalization and returns an object of class marrayFit
that contains the normalization information as a list with the following
list components:
varfun |
: A character vector of names of predictor variables. |
x |
: A numeric matrix of predictor variables. |
y |
: A numeric matrix of repsonses. |
residuals |
: A numeric matrix of normalized values (typically log ratios (M)). |
fitted |
: A numeric matrix of the fitted values. |
enp |
: The equivalent number of parameters; see |
df.residual |
: The residual degrees of freedom. |
fun |
: A character string indicating the name of the function used for normalization. |
Note that the residuals
component stores the normalized ratios.
Yuanyuan Xiao, yxiao@itsa.ucsf.edu,
Jean Yee Hwa Yang, jean@biostat.ucsf.edu
Y. H. Yang, S. Dudoit, P. Luu, and T. P. Speed (2001). Normalization for cDNA microarray data. In M. L. Bittner, Y. Chen, A. N. Dorsel, and E. R. Dougherty (eds), Microarrays: Optical Technologies and Informatics, Vol. 4266 of Proceedings of SPIE.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | ## using the swirl data as example
data(swirl)
## median normalization
med <- fitWithin(fun="medfit")
swirl1.med <- med(swirl[,1])
norm.M <- swirl1.med$residuals ## matrix of normalized ratios
## rlm normalization
rlmF <- fitWithin(fun="rlmfit")
swirl1.rlm <- rlmF(swirl[,1])
## loess normalization, default span=0.4
loessF <- fitWithin(fun="loessfit")
swirl1.loess <- loessF(swirl[,1])
## loess normalization, span=0.2
loessF.1 <- fitWithin(fun="loessfit", span=0.2)
swirl1.loess.1 <- loessF.1(swirl[,1])
## within-printtip loess normalization
loessP <- fitWithin(z.fun="maPrintTip", fun="loessfit")
swirl1.loessP <- loessP(swirl[,1])
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.