Description Usage Arguments Value Author(s) Examples
Based on the specified percentage, this function finds the RS threshold and recommend which test samples may benefit by classifying with the data set at the second stage.
1 | Step.pred(RS, percent)
|
RS |
A vector of RS. |
percent |
Percentage of samples allow to pass to the second stage data set. |
A list object with following components:
RS.cut |
RS threshold corresponding to the specified re-classification percentage. |
ind |
a vector of binary values. 1 denotes sample is recommend to classify with the data set at the second stage and vice versa. |
Askar Obulkasim
Maintainer: Askar Obulkasim <askar703@gmail.com>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | data(CNS)
train.cli <- t(CNS$cli[1:40,])
test.cli <- t(CNS$cli[41:60,])
train.gen <- CNS$mrna[,1:40]
test.gen <- CNS$mrna[,41:60]
train.label <- CNS$class[1:40]
test.label <- CNS$class[41:60]
pred.cli <- Classifier(train = train.cli, train.label = train.label, test = test.cli,
type = "GLM_L1", CVtype = "k-fold", outerkfold = 2, innerkfold = 2)
pred.gen <- Classifier(train = train.gen, train.label = train.label, test = test.gen,
type = "GLM_L1", CVtype = "k-fold", outerkfold = 2, innerkfold = 2)
prox1 <- Proximity(train.cli, train.label, test.cli, N = 2)$prox.test
prox2 <- Proximity(train.gen, train.label, NULL, N = 2)$prox.train
RS <- RS.generator(pred.cli$P.train, pred.gen$P.train, train.label, prox1,
prox2, type = "rank")
res <- Step.pred(RS, 30)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.