| paep | R Documentation | 
Computes the cdf of AEP distribution given by
F_{X}(x|Θ)= \frac{1-ε}{2}-\frac{1-ε}{2 Γ\bigl(1+\frac{1}{α}\bigr)} γ\Bigl(\Big|\frac{μ-x}{σ(1-ε)}\Big|^{α},\frac{1}{α}\Bigr),~{}~x < μ,
F_{X}(x|Θ)= \frac{1-ε}{2}+\frac{1+ε}{2 Γ\bigl(1+\frac{1}{α}\bigr)} γ\Bigl(\Big|\frac{x-μ}{σ(1+ε)}\Big|^{α},\frac{1}{α}\Bigr),~{{}}~x ≥q μ,
where -∞<x<+∞, Θ=(α,σ,μ,ε)^T with 0<α ≤q 2, σ> 0, -∞<μ<∞, and -1<ε<1.
paep(x, alpha, sigma, mu, epsilon, log.p = FALSE, lower.tail = TRUE)
| x | Vector of observations. | 
| alpha | Tail thickness parameter. | 
| sigma | Scale parameter. | 
| mu | Location parameter. | 
| epsilon | Skewness parameter. | 
| log.p | If  | 
| lower.tail | If  | 
Computed cdf of AEP distribution at points of vector x.
Mahdi Teimouri
paep(x = 2, alpha = 1.5, sigma = 1, mu = 0, epsilon = 0.5, log.p = FALSE, lower.tail = TRUE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.