| qaep | R Documentation | 
Computes the quantile function of AEP distribution given by
F_{X}^{-1}(u|Θ)= μ-σ(1-ε)\biggl[\frac{γ\bigl(\frac{1-ε-2u}{1-ε},\frac{1}{α}\bigr)}{Γ\bigl(\frac{1}{α}\bigr)}\biggr]^{\frac{1}{α}},~{{}}~u≤q \frac{1-ε}{2},
F_{X}^{-1}(u|Θ)= μ+σ(1+ε)\biggl[\frac{γ\bigl(\frac{2u+ε-1}{1+ε},\frac{1}{α}\bigr)}{Γ\bigl(\frac{1}{α}\bigr)}\biggr]^{\frac{1}{α}},~{{}}~u> \frac{1-ε}{2}.\\
where -∞<x<+∞, Θ=(α,σ,μ,ε)^T with 0<α ≤q 2, σ> 0, -∞<μ<∞, -1<ε<1, and
γ(u,ν) =\int_{0}^{u}t^{ν-1}\exp\bigl\{-t\bigr\}dt, ~ν>0.
qaep(u, alpha, sigma, mu, epsilon)
| u | Numeric vector with values in (0,1) whose quantiles are desired. | 
| alpha | Tail thickness parameter. | 
| sigma | Scale parameter. | 
| mu | Location parameter. | 
| epsilon | Skewness parameter. | 
A vector of length n, consists of the random generated values from AEP distribution.
Mahdi Teimouri
qaep(runif(1), alpha = 1.5, sigma = 1, mu = 0, epsilon = 0.5)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.