Nothing
# Copyright (C) 2018 Sebastian Sosa, Ivan Puga-Gonzalez, Hu Feng He, Xiaohua Xie, Cédric Sueur
#
# This file is part of Animal Network Toolkit Software (ANTs).
#
# ANT is free software: you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 2 of the License, or
# (at your option) any later version.
#
# ANT is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
met.all.single.mat <- function(M, df, vec) {
metrics <- c(
"affinity", "affinityB", # 2
"betweennessB", "inbetweennessB", "outbetweennessB", # 5
"norm.betweennessB", "norm.inbetweennessB", "norm.outbetweennessB", # 8
"betweenness", "inbetweenness", "outbetweenness", # 11
"short.betweenness", "short.inbetweenness", "short.outbetweenness", # 14
"norm.betweenness", "norm.inbetweenness", "norm.outbetweenness", # 17
"norm.short.betweenness", "norm.short.inbetweenness", "norm.short.outbetweenness", # 20
"degree", "outdegree", "indegree", # 23
"disparity", "indisparity", "outdisparity", # 26
"eigenB", "outeigenB", "ineigenB", "eigen", "outeigen", "ineigen", # 32
"lpB", "lp", # 34
"reach", "reachB", # 36
"ri", # 37
"strength", "outstrength", "instrength"
) # 40
option <- metrics %in% vec
# Affinity ------------------------------------------------------------------------------------
if (option[1] == TRUE) {
t <- met.affinity.single(M, binary = TRUE)
df$instrength <- t
}
if (option[2] == TRUE) {
t <- met.affinity.single(M, binary = TRUE)
df$affinityB <- t
}
# Betweenness ---------------------------------------------------------------------------------
# Binary not noarmalized betweenness
if (option[3] == TRUE) {
t <- met.betweenness.single(M, binary = TRUE, shortest.weight = FALSE, normalization = FALSE, sym = TRUE, out = TRUE)
df$betweennessB <- t
}
if (option[4] == TRUE) {
t <- met.betweenness.single(M, binary = TRUE, shortest.weight = FALSE, normalization = FALSE, sym = FALSE, out = FALSE)
df$inbetweennessB <- t
}
if (option[5] == TRUE) {
t <- met.betweenness.single(M, binary = TRUE, shortest.weight = FALSE, normalization = FALSE, sym = FALSE, out = TRUE)
df$outbetweennessB <- t
}
# Binary noarmalized betweenness
if (option[6] == TRUE) {
t <- met.betweenness.single(M, binary = TRUE, shortest.weight = FALSE, normalization = TRUE, sym = TRUE, out = TRUE)
df$norm.betweennessB <- t
}
if (option[7] == TRUE) {
t <- met.betweenness.single(M, binary = TRUE, shortest.weight = FALSE, normalization = TRUE, sym = FALSE, out = FALSE)
df$norm.inbetweennessB <- t
}
if (option[8] == TRUE) {
t <- met.betweenness.single(M, binary = TRUE, shortest.weight = FALSE, normalization = TRUE, sym = FALSE, out = TRUE)
df$norm.outbetweennessB <- t
}
# weighted non noarmalized and through strongest links betweenness
if (option[9] == TRUE) {
t <- met.betweenness.single(M, binary = FALSE, shortest.weight = FALSE, normalization = FALSE, sym = TRUE, out = TRUE)
df$betweenness <- t
}
if (option[10] == TRUE) {
t <- met.betweenness.single(M, binary = FALSE, shortest.weight = FALSE, normalization = FALSE, sym = FALSE, out = FALSE)
df$inbetweenness <- t
}
if (option[11] == TRUE) {
t <- met.betweenness.single(M, binary = FALSE, shortest.weight = FALSE, normalization = FALSE, sym = FALSE, out = FALSE)
df$outbetweenness <- t
}
# weighted non noarmalized and through weakest links betweenness
if (option[12] == TRUE) {
t <- met.betweenness.single(M, binary = FALSE, shortest.weight = TRUE, normalization = FALSE, sym = TRUE, out = TRUE)
df$short.betweenness <- t
}
if (option[13] == TRUE) {
t <- met.betweenness.single(M, binary = FALSE, shortest.weight = TRUE, normalization = FALSE, sym = FALSE, out = FALSE)
df$short.inbetweenness <- t
}
if (option[14] == TRUE) {
t <- met.betweenness.single(M, binary = FALSE, shortest.weight = TRUE, normalization = FALSE, sym = FALSE, out = FALSE)
df$short.outbetweenness <- t
}
# weighted noarmalized and through strongest links betweenness
if (option[15] == TRUE) {
t <- met.betweenness.single(M, binary = FALSE, shortest.weight = FALSE, normalization = TRUE, sym = TRUE, out = TRUE)
df$norm.betweenness <- t
}
if (option[16] == TRUE) {
t <- met.betweenness.single(M, binary = FALSE, shortest.weight = FALSE, normalization = TRUE, sym = FALSE, out = FALSE)
df$norm.inbetweenness <- t
}
if (option[17] == TRUE) {
t <- met.betweenness.single(M, binary = FALSE, shortest.weight = FALSE, normalization = TRUE, sym = FALSE, out = FALSE)
df$norm.outbetweenness <- t
}
# weighted noarmalized and through weakest links betweenness
if (option[18] == TRUE) {
t <- met.betweenness.single(M, binary = FALSE, shortest.weight = TRUE, normalization = TRUE, sym = TRUE, out = TRUE)
df$norm.short.betweenness <- t
}
if (option[19] == TRUE) {
t <- met.betweenness.single(M, binary = FALSE, shortest.weight = TRUE, normalization = TRUE, sym = FALSE, out = FALSE)
df$norm.short.inbetweenness <- t
}
if (option[20] == TRUE) {
t <- met.betweenness.single(M, binary = FALSE, shortest.weight = TRUE, normalization = TRUE, sym = FALSE, out = FALSE)
df$norm.short.outbetweenness <- t
}
# Degree --------------------------------------------------------------------------------------
if (option[21] == TRUE) {
t <- met.degree.single(M)
df$degree <- t
}
if (option[22] == TRUE) {
t <- met.outdegree.single(M)
df$outdegree <- t
}
if (option[23] == TRUE) {
t <- met.indegree.single(M)
df$indegree <- t
}
# Disparity -----------------------------------------------------------------------------------
if (option[24] == TRUE & any(option[c(25, 26)]) == FALSE) {
t <- met.disparity.single(M)
df$disparity <- t
}
# else{
# tmp=met.disparity.single(M,directed=TRUE)
# tmp=do.call('rbind',tmp)
# if(option[24]==TRUE){df$disparity=tmp[,1]}
# if(option[25]==TRUE){df$indisparity=tmp[,1]}
# if(option[26]==TRUE){df$outdisparity=tmp[,1]}
# }
# Eigenvector ---------------------------------------------------------------------------------
if (option[27] == TRUE) {
t <- met.eigen(M, sym = TRUE, binary = TRUE, out = FALSE)
df$eigenB <- t
}
if (option[28] == TRUE) {
t <- met.eigen(M, binary = TRUE, sym = FALSE, out = TRUE)
df$outeigenB <- t
}
if (option[29] == TRUE) {
t <- met.eigen(M, binary = TRUE, sym = FALSE, out = FALSE)
df$ineigenB <- t
}
if (option[30] == TRUE) {
t <- met.eigen(M, binary = FALSE, sym = TRUE, out = FALSE)
df$eigen <- t
}
if (option[31] == TRUE) {
t <- met.eigen(M, binary = FALSE, sym = FALSE, out = TRUE)
df$outeigen <- t
}
if (option[32] == TRUE) {
t <- met.eigen(M, binary = FALSE, sym = FALSE, out = FALSE)
df$ineigen <- t
}
# Laplacian centrality ------------------------------------------------------------------------
if (option[33] == TRUE) {
t <- met.lpcB(M)
df$lpB <- t
}
if (option[34] == TRUE) {
t <- met.lpcW(M)
df$lp <- t
}
# Reach ---------------------------------------------------------------------------------------
if (option[35] == TRUE) {
t <- met.reach(M)
df$reach <- t
}
# RI index ------------------------------------------------------------------------------------
if (option[37] == TRUE) {
t <- met.ri.single(M)
df$ri <- t
}
# strength ------------------------------------------------------------------------------------
if (option[38] == TRUE) {
t <- met.strength.single(M)
df$strength <- t
}
if (option[39] == TRUE) {
t <- met.outstrength.single(M)
df$outstrength <- t
}
if (option[40] == TRUE) {
t <- met.instrength.single(M)
df$instrength <- t
}
return(df)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.