Nothing
test_that("calc_disorder works with valid input", {
# Valid input: Participants with valid answers for all 13 questions
survey_df <- data.frame(
person_id = c(rep(1, 13), rep(2, 13)),
question_concept_id = rep(c(40192420, 40192522, 40192412, 40192469, 40192456, 40192386,
40192500, 40192493, 40192457, 40192476, 40192404, 40192400,
40192384), 2),
answer_concept_id = c(rep(40192514, 13), rep(40192422, 13)) # Strongly agree for person 1, Strongly disagree for person 2
)
# After reverse-coding 4 items, the expected score should reflect the new values
expected_output <- data.frame(
person_id = c(1, 2),
disorder = c(3.08, 1.92) # Rounded mean after reverse coding
)
# Call the function and compare with expected output
result <- calc_disorder(survey_df)
# Sort both result and expected output for comparison
result <- result[order(result$person_id), ]
expected_output <- expected_output[order(expected_output$person_id), ]
expect_equal(result$disorder, expected_output$disorder)
})
test_that("calc_disorder handles incomplete responses correctly", {
# Input with some participants missing answers
survey_df <- data.frame(
person_id = c(rep(1, 10), rep(2, 13)),
question_concept_id = c(rep(c(40192420, 40192522, 40192412, 40192469, 40192456, 40192386,
40192500, 40192493, 40192457, 40192476), 1), # Person 1 missing 3 questions
rep(c(40192420, 40192522, 40192412, 40192469, 40192456, 40192386,
40192500, 40192493, 40192457, 40192476, 40192404, 40192400,
40192384), 1)),
answer_concept_id = c(rep(40192455, 10), rep(40192514, 13)) # Person 1 has "Agree", Person 2 has "Strongly agree"
)
# Expected output: Person 1 gets NA for incomplete responses, person 2 has a disorder score of 4
expected_output <- data.frame(
person_id = c(1, 2),
disorder = c(NA_real_, 3.08) # Person 1 has incomplete answers
)
result <- calc_disorder(survey_df)
# Sort both result and expected output
result <- result[order(result$person_id), ]
expected_output <- expected_output[order(expected_output$person_id), ]
expect_equal(result$disorder, expected_output$disorder)
})
test_that("calc_disorder handles reverse-coded questions correctly", {
# Input with reverse-coded and normal questions
survey_df <- data.frame(
person_id = c(rep(1, 13)),
question_concept_id = c(40192420, 40192522, 40192412, 40192469, 40192456, 40192386,
40192500, 40192493, 40192457, 40192476, 40192404, 40192400,
40192384),
answer_concept_id = c(40192455, 40192455, 40192455, 40192455, # Agree for all normal items
40192408, 40192408, 40192455, 40192455, # Disagree for reverse-coded items
40192455, 40192455, 40192455, 40192408, 40192408)
)
# Expected output: The reverse-coded items should adjust the score correctly
expected_output <- data.frame(
person_id = c(1),
disorder = c(3.0) # Manually calculated based on reverse coding
)
result <- calc_disorder(survey_df)
# Sort both result and expected output for comparison
result <- result[order(result$person_id), ]
expected_output <- expected_output[order(expected_output$person_id), ]
expect_equal(result$disorder, expected_output$disorder)
})
test_that("calc_disorder handles missing responses", {
# Input with missing answer concept IDs
survey_df <- data.frame(
person_id = c(rep(1, 13), rep(2, 13)),
question_concept_id = rep(c(40192420, 40192522, 40192412, 40192469, 40192456, 40192386,
40192500, 40192493, 40192457, 40192476, 40192404, 40192400,
40192384), 2),
answer_concept_id = c(rep(NA, 13), rep(40192422, 13)) # Missing answers for person 1, Strongly disagree for person 2
)
# Expected output: Person 1 gets NA, person 2 has a disorder score of 1
expected_output <- data.frame(
person_id = c(1, 2),
disorder = c(NA_real_, 1.92) # NA for person 1 with missing answers
)
result <- calc_disorder(survey_df)
# Sort both result and expected output
result <- result[order(result$person_id), ]
expected_output <- expected_output[order(expected_output$person_id), ]
expect_equal(result$disorder, expected_output$disorder)
})
test_that("calc_disorder handles empty input", {
# Empty input case
survey_df <- data.frame(
person_id = integer(0),
question_concept_id = integer(0),
answer_concept_id = integer(0)
)
result <- calc_disorder(survey_df)
# Expect the result to be an empty data frame
expect_equal(nrow(result), 0)
})
test_that("calc_disorder handles invalid column names", {
# Input with incorrect column names
bad_survey_df <- data.frame(
wrong_person_id = c(1, 1),
wrong_question_id = c(40192420, 40192412),
wrong_answer_id = c(40192514, 40192408)
)
# Expect an error when the input does not have the correct column names
expect_error(calc_disorder(bad_survey_df), "object 'question_concept_id' not found")
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.