Nothing
test_that("calc_hcd_mean works with valid input", {
# Valid input with different levels of discrimination experiences
survey_df <- data.frame(
person_id = c(1, 1, 1, 1, 1, 1, 1, # 7 responses for person 1
2, 2, 2, 2, 2, 2, 2), # 7 responses for person 2
question_concept_id = rep(c(40192383, 40192394, 40192423, 40192425, 40192497, 40192503, 40192505), 2),
answer_concept_id = c(40192465, 40192481, 40192429, 40192382, 40192515, 40192465, 40192481, # Person 1: Mean = 2.57
40192515, 40192515, 40192515, 40192515, 40192515, 40192515, 40192515) # Person 2: Mean = 5.00
)
# Expected output: correctly calculated mean scores
expected_output <- data.frame(
person_id = c(1, 2),
hcd_mean = c(2.57, 5.00)
)
# Call the function and compare with expected output
result <- calc_hcd_mean(survey_df)
expect_equal(result$hcd_mean, expected_output$hcd_mean)
})
test_that("calc_hcd_mean handles participants with no discrimination", {
# All answers are 'Never' (40192465), meaning hcd_mean should be 1.0
survey_df <- data.frame(
person_id = rep(1, 7),
question_concept_id = c(40192383, 40192394, 40192423, 40192425, 40192497, 40192503, 40192505),
answer_concept_id = rep(40192465, 7) # Never for all
)
# Expected output: hcd_mean = 1.0
expected_output <- data.frame(
person_id = c(1),
hcd_mean = c(1.0)
)
result <- calc_hcd_mean(survey_df)
expect_equal(result$hcd_mean, expected_output$hcd_mean)
})
test_that("calc_hcd_mean handles incomplete responses", {
# Person 2 has fewer than 7 responses
survey_df <- data.frame(
person_id = c(1, 1, 1, 1, 1, 1, 1, # 7 responses for person 1
2, 2, 2, 2, 2), # Only 5 responses for person 2
question_concept_id = c(rep(c(40192383, 40192394, 40192423, 40192425, 40192497, 40192503, 40192505), 1),
c(40192383, 40192394, 40192423, 40192425, 40192497)), # Missing 2 for person 2
answer_concept_id = c(rep(40192481, 7), rep(40192481, 5)) # All "Rarely" (2)
)
# Expected output: person 1 gets a valid score, person 2 gets NA
expected_output <- data.frame(
person_id = c(1, 2),
hcd_mean = c(2.0, NA_real_)
)
result <- calc_hcd_mean(survey_df)
expect_equal(result$hcd_mean, expected_output$hcd_mean)
})
test_that("calc_hcd_mean handles skipped responses", {
# Some participants have skipped responses
survey_df <- data.frame(
person_id = c(1, 1, 1, 1, 1, 1, 1, # 7 responses for person 1
2, 2, 2, 2, 2, 2, 2), # 7 responses for person 2
question_concept_id = rep(c(40192383, 40192394, 40192423, 40192425, 40192497, 40192503, 40192505), 2),
answer_concept_id = c(40192481, 40192481, 40192481, 40192481, 40192481, 40192481, 40192481, # All "Rarely" for person 1
40192481, 903096, 40192481, 40192481, 903096, 40192481, 40192481) # Skipped some for person 2
)
# Expected output: person 1 gets a valid score, person 2 gets NA
expected_output <- data.frame(
person_id = c(1, 2),
hcd_mean = c(2.0, NA_real_)
)
result <- calc_hcd_mean(survey_df)
expect_equal(result$hcd_mean, expected_output$hcd_mean)
})
test_that("calc_hcd_mean handles missing responses", {
# Some participants did not respond (NA values)
survey_df <- data.frame(
person_id = c(1, 2, 3, 4, 5, 6, 7),
question_concept_id = c(40192383, 40192394, 40192423, 40192425, 40192497, 40192503, 40192505),
answer_concept_id = c(NA, NA, NA, NA, NA, NA, NA) # All NA responses
)
# Expected output: all should have NA
expected_output <- data.frame(
person_id = c(1, 2, 3, 4, 5, 6, 7),
hcd_mean = c(NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_)
)
result <- calc_hcd_mean(survey_df)
expect_equal(result$hcd_mean, expected_output$hcd_mean)
})
test_that("calc_hcd_mean handles empty input", {
# Empty input case
survey_df <- data.frame(
person_id = integer(0),
question_concept_id = integer(0),
answer_concept_id = integer(0)
)
result <- calc_hcd_mean(survey_df)
# Expect the result to be an empty data frame
expect_equal(nrow(result), 0)
})
test_that("calc_hcd_mean handles invalid column names", {
# Input with incorrect column names
bad_survey_df <- data.frame(
wrong_person_id = c(1, 2, 3),
wrong_question_id = c(40192383, 40192394, 40192423),
wrong_answer_id = c(40192481, 40192481, 40192481)
)
# Expect an error when the input does not have the correct column names
expect_error(calc_hcd_mean(bad_survey_df), "object 'question_concept_id' not found")
})
test_that("calc_hcd_mean returns NA for participants without valid answers", {
# No valid answers for any participants
survey_df <- data.frame(
person_id = c(1, 2, 3, 4, 5, 6, 7),
question_concept_id = c(40192383, 40192394, 40192423, 40192425, 40192497, 40192503, 40192505),
answer_concept_id = c(99999999, 99999999, 99999999, 99999999, 99999999, 99999999, 99999999) # All invalid responses
)
result <- calc_hcd_mean(survey_df)
# Expected output: all participants should have NA
expected_output <- data.frame(
person_id = c(1, 2, 3, 4, 5, 6, 7),
hcd_mean = c(NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_)
)
expect_equal(result$hcd_mean, expected_output$hcd_mean)
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.