tests/1_tests.R

# install the package and use this script to test the package
library("APCI")
# or: remotes::install_github("jiahui1902/APCI")
test_data <- APCI::women9017
test_data$acc <- as.factor(test_data$acc)
test_data$pcc <- as.factor(test_data$pcc)
test_data$educc <- as.factor(test_data$educc)
test_data$educr <- as.factor(test_data$educr)

# equal age and period interval
APC_I <- APCI::apci(outcome = "inlfc",
                    age = "acc",
                    period = "pcc",
                    cohort = "ccc",
                    weight = "wt",
                    data = test_data,dev.test=FALSE,
                    print = TRUE,
                    family = "gaussian")
summary(APC_I)

APC_I$model$coefficients
summary(APC_I$model)
APC_I$dev_global
APC_I$dev_local
APC_I$intercept
APC_I$age_effect
APC_I$period_effect
APC_I$cohort_average
APC_I$cohort_slope
APC_I$cohort_index


apci.plot.raw(data = test_data, outcome_var = "inlfc",age="acc",period="pcc")
apci.plot(data = test_data, outcome_var = "inlfc", age = "acc",model=APC_I,
          period = "pcc",type="explore")

apci.bar(model = APC_I, age = "acc",period = "pcc")
apci.plot.heatmap(model = APC_I, age = "acc",period = "pcc")
apci.plot.hexagram(model = APC_I, age = "acc",period = "pcc",
                   first_age = 20,first_period = 1990,interval = 5)
apci.plot(data = test_data, outcome_var = "inlfc", age = "acc",model=APC_I,
          period = "pcc")
# other type of generalized linear model
APC_I2 <- APCI::apci(outcome = "inlfc",
                    age = "acc",
                    period = "pcc",
                    cohort = "ccc",
                    weight = "wt",
                    covariate = "offset(log(educ))",
                    data = test_data,dev.test=FALSE,
                    print = TRUE,
                    family = "poisson")

summary(APC_I2)


# unequal age and period interval
uneqal_interval1 <- APCI::apci(outcome = "inlfc",
                    age = "age",
                    period = "year",
                    cohort = "ccc",
                    weight = "wt",
                    data = test_data,dev.test=FALSE,
                    print = TRUE,
                    family = "gaussian",
                    unequal_interval = TRUE,
                    age_range = 20:64,
                    period_range = 1990:2019,
                    age_interval = 5,
                    period_interval = 10)
uneqal_interval1$cohort_index

uneqal_interval2 <- APCI::apci(outcome = "inlfc",
                    age = "age",
                    period = "year",
                    cohort = "ccc",
                    weight = "wt",
                    data = test_data,dev.test=FALSE,
                    print = TRUE,
                    family = "gaussian",
                    unequal_interval = TRUE,
                    age_range = 20:64,
                    period_range = 1990:2019,
                    age_interval = 10,
                    period_interval = 5)
uneqal_interval2$cohort_index

uneqal_interval3 <- APCI::apci(outcome = "inlfc",
                               age = "age",
                               period = "year",
                               cohort = "ccc",
                               weight = "wt",
                               data = test_data,dev.test=FALSE,
                               print = TRUE,
                               family = "gaussian",
                               unequal_interval = T,
                               age_range = 20:69,
                               period_range = 1990:2019,
                               age_group = c("20-29","30-39",
                                             "40-49","50-59",
                                             "60-69"),
                               period_group = c("1990-1994","1995-1999",
                                                "2000-2004","2005-2009",
                                                "2010-2014","2015-2019"))
uneqal_interval3$cohort_index

uneqal_interval2$cohort_index
uneqal_interval3$cohort_index
uneqal_interval2$cohort_average$cohort_average
uneqal_interval3$cohort_average$cohort_average

# simulated panel data for GEE
simulation_gee <- simulation
simulation_gee$id <- 1:nrow(simulation_gee)
simulation_gee$idid <- 1:nrow(simulation_gee)
# simulation_gee$id <- NULL
simulation_gee = simulation_gee[sample(nrow(simulation_gee),30000,replace=T),]
model_gee <- apci(outcome = "y",
                  age = "age",
                  period = "period",
                  cohort = NULL,
                  weight = NULL,
                  covariate = NULL,
                  data=simulation_gee,
                  family ="gaussian",
                  dev.test = FALSE,
                  print = TRUE,
                  gee = TRUE,
                  id = "id",
                  corstr = "exchangeable")
summary(model_gee)

Try the APCI package in your browser

Any scripts or data that you put into this service are public.

APCI documentation built on Sept. 11, 2024, 7:25 p.m.