Nothing
## ----setup, include=FALSE-----------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
fig.width = 7,
fig.height = 5
)
library(AccSamplingDesign)
## -----------------------------------------------------------------------------
# Create an attribute plan with binomial assumption
plan_attr <- optPlan(
PRQ = 0.01, # Acceptable quality level (1%)
CRQ = 0.05, # Rejectable quality level (5%)
alpha = 0.02, # Producer's risk
beta = 0.15, # Consumer's risk
distribution = "binomial"
)
# Summary of the plan
summary(plan_attr)
# Probability of accepting 3% defective
accProb(plan_attr, 0.03)
# Plot the OC curve
plot(plan_attr)
## -----------------------------------------------------------------------------
# Create a variable plan assuming known sigma
plan_var <- optPlan(
PRQ = 0.025,
CRQ = 0.1,
alpha = 0.05,
beta = 0.10,
distribution = "normal",
sigma_type = "known"
)
# Summary
summary(plan_var)
# Plot OC curve
plot(plan_var)
## -----------------------------------------------------------------------------
# Create a variable plan assuming known sigma
plan_var2 <- optPlan(
PRQ = 0.025,
CRQ = 0.1,
alpha = 0.05,
beta = 0.10,
distribution = "normal",
sigma_type = "unknown"
)
# Summary
summary(plan_var2)
## -----------------------------------------------------------------------------
# Create a variable plan using Beta distribution
plan_beta <- optPlan(
PRQ = 0.05,
CRQ = 0.2,
alpha = 0.05,
beta = 0.10,
distribution = "beta",
theta = 44000000,
theta_type = "known",
LSL = 0.00001 # Lower Specification Limit
)
# Summary
summary(plan_beta)
# Plot OC curve
plot(plan_beta)
# Plot OC curve be the process mean
plot(plan_beta, by = "mean")
## -----------------------------------------------------------------------------
# Create a variable plan using Beta distribution
plan_beta2 <- optPlan(
PRQ = 0.05,
CRQ = 0.2,
alpha = 0.05,
beta = 0.10,
distribution = "beta",
theta = 44000000,
theta_type = "unknown",
LSL = 0.00001
)
# Summary
summary(plan_beta2)
## -----------------------------------------------------------------------------
# Define range of defect rates
pd <- seq(0, 0.15, by = 0.001)
# Generate OC data from optimal plan
oc_opt <- OCdata(plan = plan_attr, pd = pd)
# Compare with manual plans
mplan1 <- manualPlan(n = plan_attr$n, c = plan_attr$c - 1, distribution = "binomial")
oc_alt1 <- OCdata(plan = mplan1, pd = pd)
# Plot comparison
plot(pd, oc_opt$paccept, type = "l", col = "blue", lwd = 2,
xlab = "Proportion Defective", ylab = "Probability of Acceptance",
main = "OC Curves Comparison for Attributes Sampling Plan")
lines(pd, oc_alt1$paccept, col = "red", lwd = 2, lty = 2)
legend("topright", legend = c("Optimal Plan", "Manual Plan c - 1"),
col = c("blue", "red"), lty = c(1, 2), lwd = 2)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.