Nothing
## ----eval=FALSE, include=TRUE-------------------------------------------------
# # install.packages("AgePopDenom")
## ----eval=FALSE, include=TRUE-------------------------------------------------
# # install.packages("devtools")
# devtools::install_github("truenomad/AgePopDenom")
## ----eval=FALSE, include=TRUE-------------------------------------------------
# library(AgePopDenom)
## ----eval=FALSE, include=TRUE-------------------------------------------------
# init(
# r_script_name = "full_pipeline.R",
# cpp_script_name = "model.cpp"
# )
## ----eval=FALSE, include=TRUE-------------------------------------------------
# download_dhs_datasets(
# country_codes = c("GMB"),
# email = "my_email@example.com",
# project = "Population project"
# )
#
# process_dhs_data()
## ----eval=FALSE, include=TRUE-------------------------------------------------
# download_shapefile("GMB")
## ----eval=FALSE, include=TRUE-------------------------------------------------
# download_pop_rasters("GMB")
## ----eval=FALSE, include=TRUE-------------------------------------------------
# extract_afurextent()
## ----eval=FALSE, include=TRUE-------------------------------------------------
# run_full_workflow("GMB")
## ----eval=FALSE, include=TRUE-------------------------------------------------
# fit_spatial_model(
# country_code,
# data,
# scale_outcome = "log_scale",
# shape_outcome = "log_shape",
# covariates = "urban",
# cpp_script_name = "02_scripts/model",
# output_dir = "03_outputs/3a_model_outputs"
# )
## ----eval=FALSE, include=TRUE-------------------------------------------------
# control_params = list(
# trace = 3, # Higher values show more optimization details
# maxit = 2000, # Increase for complex spatial structures
# abs.tol = 1e-10, # Stricter convergence criteria
# rel.tol = 1e-8 # Relative convergence tolerance
# )
## ----eval=FALSE, include=TRUE-------------------------------------------------
# fit_spatial_model(
# data = survey_data,
# scale_outcome = "log_scale",
# shape_outcome = "log_shape",
# covariates = "urban",
# cpp_script_name = "02_scripts/model",
# manual_params = list(
# beta1 = c(0.5, -0.3),
# beta2 = c(0.2, 0.1),
# gamma = 0.8,
# log_sigma2 = log(0.5),
# log_phi = log(100),
# log_tau2_1 = log(0.1)
# ),
# control_params = list(
# trace = 3,
# maxit = 2000,
# abs.tol = 1e-10
# )
# )
## ----eval=FALSE, include=TRUE-------------------------------------------------
# generate_variogram_plot(
# age_param_data,
# fit_vario,
# country_code,
# scale_outcome = "log_scale",
# output_dir = "03_outputs/3b_visualizations",
# width = 12,
# height = 9,
# png_resolution = 300
# )
## ----eval=FALSE, include=TRUE-------------------------------------------------
# create_prediction_data(
# country_code,
# country_shape,
# pop_raster,
# ur_raster,
# adm2_shape,
# cell_size = 5000,
# ignore_cache = FALSE,
# output_dir = "03_outputs/3a_model_outputs"
# )
## ----eval=FALSE, include=TRUE-------------------------------------------------
# generate_gamma_predictions(
# country_code,
# age_param_data,
# model_params,
# predictor_data,
# shapefile,
# cell_size = 5000,
# n_sim = 5000,
# ignore_cache = FALSE,
# output_dir = "03_outputs/3a_model_outputs"
# )
## ----eval=FALSE, include=TRUE-------------------------------------------------
# generate_gamma_raster_plot(
# predictor_data,
# pred_list,
# country_code,
# output_dir = "03_outputs/3b_visualizations",
# save_raster = TRUE
# )
## ----eval=FALSE, include=TRUE-------------------------------------------------
# generate_age_pop_table(
# predictor_data,
# scale_pred,
# shape_pred,
# country_code,
# age_range = c(0, 99),
# age_interval = 1,
# ignore_cache = FALSE,
# output_dir = "03_outputs/3c_table_outputs"
# )
## ----eval=FALSE, include=TRUE-------------------------------------------------
# generate_age_pyramid_plot(
# dataset,
# country_code,
# output_dir = "03_outputs/3b_visualizations"
# )
## ----eval=FALSE, include=TRUE-------------------------------------------------
# process_final_population_data(
# input_dir = "03_outputs/3c_table_outputs",
# excel_output_file = "03_outputs/3d_compiled_results/age_pop_denom_compiled.xlsx"
# )
## ----eval=FALSE, include=TRUE-------------------------------------------------
# init(
# r_script_name = "full_pipeline.R",
# cpp_script_name = "model.cpp",
# open_r_script = FALSE
# )
#
# # set up country code
# cntry_code = "GMB"
#
# # Gather and process datasets ---------------------------------------
#
# # Set parameters for simulation
# total_population <- 266
# urban_proportion <- 0.602
# total_coords <- 266
# lon_range <- c(-16.802, -13.849)
# lat_range <- c(13.149, 13.801)
# mean_web_x <- -1764351
# mean_web_y <- 1510868
#
# # Simulate processed survey dataset for Gambia
# set.seed(123)
# df_gambia <- NULL
# df_gambia$age_param_data <- dplyr::tibble(
# country = "Gambia",
# country_code_iso3 = "GMB",
# country_code_dhs = "GM",
# year_of_survey = 2024,
# id_coords = rep(1:total_coords, length.out = total_population),
# lon = runif(total_population, lon_range[1], lon_range[2]),
# lat = runif(total_population, lat_range[1], lat_range[2]),
# web_x = rnorm(total_population, mean_web_x, 50000),
# web_y = rnorm(total_population, mean_web_y, 50000),
# log_scale = rnorm(total_population, 2.82, 0.2),
# log_shape = rnorm(total_population, 0.331, 0.1),
# urban = rep(c(1,0), c(
# round(total_population * urban_proportion),
# total_population - round(total_population * urban_proportion))),
# b1 = rnorm(total_population, 0.0142, 0.002),
# c = rnorm(total_population, -0.00997, 0.001),
# b2 = rnorm(total_population, 0.00997, 0.002),
# nsampled = sample(180:220, total_population, replace = TRUE))
#
# # save as processed dhs data
# saveRDS(
# df_gambia,
# file = here::here(
# "01_data", "1a_survey_data", "processed",
# "dhs_pr_records_combined.rds"))
#
# # Download shapefiles
# download_shapefile(cntry_code)
#
# # Download population rasters from worldpop
# download_pop_rasters(cntry_code)
#
# # Extract urban extent raster
# extract_afurextent()
#
# # Run models and get outputs ------------------------------------------
#
# # Run the full model workflow
# run_full_workflow(cntry_code)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.