conjfat2dbc: Analysis: Joint analysis of experiments in randomized block...

View source: R/conjfatdbc_function.R

conjfat2dbcR Documentation

Analysis: Joint analysis of experiments in randomized block design in scheme factorial double

Description

Function of the AgroR package for joint analysis of experiments conducted in a randomized factorial double in block design with balanced data. The function generates the joint analysis through two models. Model 1: F-test of the effects of Factor 1, Factor 2 and F1 x F2 interaction are used in reference to the mean square of the interaction with the year. Model 2: F-test of the Factor 1, Factor 2 and F1 x F2 interaction effects are used in reference to the mean square of the residual.

Usage

conjfat2dbc(
  f1,
  f2,
  block,
  experiment,
  response,
  transf = 1,
  constant = 0,
  model = 1,
  norm = "sw",
  homog = "bt",
  homog.value = 7,
  alpha.f = 0.05,
  alpha.t = 0.05
)

Arguments

f1

Numeric or complex vector with factor 1 levels

f2

Numeric or complex vector with factor 2 levels

block

Numerical or complex vector with blocks

experiment

Numeric or complex vector with locations or times

response

Numerical vector containing the response of the experiment.

transf

Applies data transformation (default is 1; for log consider 0)

constant

Add a constant for transformation (enter value)

model

Define model of the analysis of variance

norm

Error normality test (default is Shapiro-Wilk)

homog

Homogeneity test of variances (default is Bartlett)

homog.value

Reference value for homogeneity of experiments. By default, this ratio should not be greater than 7

alpha.f

Level of significance of the F test (default is 0.05)

alpha.t

Significance level of the multiple comparison test (default is 0.05)

Value

Returns the assumptions of the analysis of variance, the assumption of the joint analysis by means of a QMres ratio matrix and analysis of variance

Note

The function is still limited to analysis of variance and assumptions only.

Author(s)

Gabriel Danilo Shimizu, shimizu@uel.br

Leandro Simoes Azeredo Goncalves

Rodrigo Yudi Palhaci Marubayashi

References

Ferreira, P. V. Estatistica experimental aplicada a agronomia. Edufal, 2018.

Principles and procedures of statistics a biometrical approach Steel, Torry and Dickey. Third Edition 1997

Multiple comparisons theory and methods. Departament of statistics the Ohio State University. USA, 1996. Jason C. Hsu. Chapman Hall/CRC.

Practical Nonparametrics Statistics. W.J. Conover, 1999

Ramalho M.A.P., Ferreira D.F., Oliveira A.C. 2000. Experimentacao em Genetica e Melhoramento de Plantas. Editora UFLA.

Examples

library(AgroR)
ano=factor(rep(c(2018,2019,2020),e=48))
f1=rep(rep(c("A","B","C"),e=16),3)
f2=rep(rep(rep(c("a1","a2","a3","a4"),e=4),3),3)
resp=rnorm(48*3,10,1)
bloco=rep(c("b1","b2","b3","b4"),36)
dados=data.frame(ano,f1,f2,resp,bloco)
with(dados,conjfat2dbc(f1,f2,bloco,ano,resp, model=1))

AgroR documentation built on May 29, 2024, 4:18 a.m.