Nothing
#' @export
#' @importFrom rlang .data
#'
#' @title Apply hourly aggregation QC using "AB_OO" algorithm
#'
#' @param pat A PurpleAir timeseries object.
#' @param min_count Aggregation bins with fewer than \code{min_count} measurements
#' will be marked as \code{NA}.
#' @param returnAllColumns Logical specifying whether to return all columns
#' of statistical data generated for QC algorithm or just the final \code{pm25}
#' result.
#'
#' @description Creates a \code{pm25} timeseries by averaging aggregated data
#' from the A and B channels and applying the following QC logic:
#'
#' \enumerate{
#' \item{Create pm25 by averaging the A and B channel aggregation means}
#' \item{Invalidate data where: (min_count < 20)}
#' \item{No further QC}
#' }
#'
#' @note Purple Air II sensors reporting after the June, 2019 firmware
#' upgrade report data every 2 minutes or 30 measurements per hour. The default
#' setting of \code{min_count = 20} is equivalent to a required data recovery
#' rate of 67%.
#'
#' @return Data frame with columns \code{datetime} and \code{pm25}.
#'
#' @examples
#' \donttest{
#' library(AirSensor)
#'
#' df_00 <-
#' example_pat %>%
#' pat_qc() %>%
#' PurpleAirQC_hourly_AB_00()
#'
#' names(df_00)
#'
#' plot(df_00, pch = 16, cex = 0.8, col = "red")
#' }
PurpleAirQC_hourly_AB_00 <- function(
pat = NULL,
min_count = 20,
returnAllColumns = FALSE
) {
# ----- Validate parameters --------------------------------------------------
MazamaCoreUtils::stopIfNull(pat)
MazamaCoreUtils::stopIfNull(min_count)
MazamaCoreUtils::stopIfNull(returnAllColumns)
# ----- Prepare aggregated data ----------------------------------------------
# Hourly counts
countData <-
pat %>%
pat_aggregate(function(x) { base::length(na.omit(x)) }) %>%
pat_extractData()
# Hourly means
meanData <-
pat %>%
pat_aggregate(function(x) { base::mean(x, na.rm = TRUE) }) %>%
pat_extractData()
# ----- Create hourly dataframe ----------------------------------------------
# NOTE: Include variables used in QC so that they can be used to create a
# NOTE: plot visualizing the how the QC algorithm rejects values.
hourlyData <-
dplyr::tibble(datetime = meanData$datetime) %>%
# Create pm25 by averaging the A and B channel aggregation means
dplyr::mutate(pm25 = (meanData$pm25_A + meanData$pm25_B) / 2) %>%
# Calculate min_count and mean_diff for use in QC
dplyr::mutate(min_count = pmin(countData$pm25_A, countData$pm25_B, na.rm = TRUE)) %>%
dplyr::mutate(mean_diff = abs(meanData$pm25_A - meanData$pm25_B)) %>%
# -----hourly_AB_00 QC algorithm -----
# When only a fraction of the data are reporting, something is wrong.
# Invalidate data where: (min_count < SOME_THRESHOLD)
dplyr::mutate(pm25 = replace(
.data$pm25,
which(.data$min_count < min_count),
NA)
)
# ----- Return ---------------------------------------------------------------
if ( returnAllColumns ) {
# Add other columns of data used in this QC
hourlyData <-
hourlyData %>%
dplyr::mutate(
pm25_A_count = countData$pm25_A,
pm25_B_count = countData$pm25_B,
pm25_A_mean = meanData$pm25_A,
pm25_B_mean = meanData$pm25_B
)
} else {
hourlyData <-
hourlyData %>%
dplyr::select(.data$datetime, .data$pm25)
}
return(hourlyData)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.