AnanseSeurat
package The AnanseSeurat
package takes pre-processed clustered single cell
objects of scRNAseq and scATACseq or a multiome combination, and
generates files for gene regulatory network (GRN) analysis. It is part
of the scANANSE pipeline. https://doi.org/10.12688/f1000research.130530.1
AnanseSeurat
can be installed from CRAN using
install.packages('AnanseSeurat')
Or to install the developmental branch from github:
library(devtools) # Tools to Make Developing R Packages Easier # Tools to Make Developing R Packages Easier
Sys.unsetenv("GITHUB_PAT")
remotes::install_github("JGASmits/AnanseSeurat@main")
library("AnanseSeurat")
rds_file <- './scANANSE/preprocessed_PDMC.Rds'
pbmc <- readRDS(rds_file)
Next you can output the data from your single cell object, the file
format, config file and sample file are all ready to automate GRN
analysis using anansnake
.
https://github.com/vanheeringen-lab/anansnake
export_CPM_scANANSE(
pbmc,
min_cells = 25,
output_dir = './scANANSE/analysis',
cluster_id = 'predicted.id',
RNA_count_assay = 'RNA'
)
export_ATAC_scANANSE(
pbmc,
min_cells = 25,
output_dir = './scANANSE/analysis',
cluster_id = 'predicted.id',
ATAC_peak_assay = 'peaks'
)
# Specify additional contrasts:
contrasts <- c('B-naive_B-memory',
'B-memory_B-naive',
'B-naive_CD14-Mono',
'CD14-Mono_B-naive')
config_scANANSE(
pbmc,
min_cells = 25,
output_dir = './scANANSE/analysis',
cluster_id = 'predicted.id',
additional_contrasts = contrasts
)
DEGS_scANANSE(
pbmc,
min_cells = 25,
output_dir = './scANANSE/analysis',
cluster_id = 'predicted.id',
additional_contrasts = contrasts
)
Follow the instructions its respective github page, https://github.com/vanheeringen-lab/anansnake After activating the conda environment, use the generated files to run GRN analysis using your single cell cluster data:
anansnake \
--configfile scANANSE/analysis/config.yaml \
--resources mem_mb=48_000 --cores 12
After running Anansnake, you can import the TF influence scores back into your single cell object of choice
pbmc <- import_seurat_scANANSE(pbmc,
cluster_id = 'predicted.id',
anansnake_inf_dir = "./scANANSE/analysis/influence")
TF_influence <- per_cluster_df(pbmc,
cluster_id = 'predicted.id',
assay = 'influence')
scANANSE gene regulatory network and motif analysis of single-cell clusters [version 1; peer review: awaiting peer review] Jos G.A. Smits, Julian A. Arts, Siebren Frölich, Rebecca R. Snabel, Branco M.H. Heuts, Joost H.A. Martens, Simon J van Heeringen, Huiqing Zhou F1000Research 2023, 12:243 (https://doi.org/10.12688/f1000research.130530.1)
The hex sticker is generated using the
hexSticker
package.
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.