Nothing
#' Central Composite Designs (CCD) with coded levels
#' @param v Number of input factors, v(>2)
#' @param type Type of central composite design i.e. ccc or cci or ccf. "ccc" is for Central Composite Circumscribed designs, "cci" is for Central Composite Inscribed designs and "ccf" is for Central Composite Face Centered designs
#' @param randomization It is for generating the randomized layout of the design. It takes either TRUE or FALSE and by default, it is set to FALSE
#' @param variance This is for generating the moment matrix and prediction variance of the design based on a second order model. It gives unique prediction variance along with its frequencies. It takes either TRUE or FALSE and by default, it is set to FALSE
#'@description This function generates Central Composite Designs (CCD) with coded levels for a given number of input factors (v). The CCD constitute combinations of factorial points, axial points and center points. Three types of CCD can be generated using this function i.e. ccc or cci or ccf. "ccc" is for Central Composite Circumscribed designs, "cci" is for Central Composite Inscribed designs and "ccf" is for Central Composite Face Centered designs. It gives the randomized layout of the design along with the moment matrix and prediction variance.
#' @return Central Composite Designs (CCD) for a given number of input factors (v) with coded levels
#' @note Here, the factorial portion consists of 2^v (full factorial) combinations and there is no upper limit for the number of input factors, v (>2). To get a CCD with smaller runs, one may use fractional factorial (of resolution V) in place of full factorial.
#' @examples
#'
#'library(AsymmetricSORDs)
#'CCD_coded(5,'ccc',FALSE,FALSE)
#'CCD_coded(6,"cci",FALSE,FALSE)
#'
#'@references
#'1) G.E.P. Box and K.B. Wilson (1951)." On the experimental attainment of optimum conditions".
#'
#'2) M. Hemavathi, Shashi Shekhar, Eldho Varghese, Seema Jaggi, Bikas Sinha & Nripes Kumar Mandal (2022)<DOI: 10.1080/03610926.2021.1944213>. "Theoretical developments in response surface designs: an informative review and further thoughts".
#'@export
CCD_coded<-function(v,type,randomization=FALSE,variance=FALSE){
v
type
randomization
variance
k<-2^v
a<-(k)^(1/4)
cbn<-(factorial(v))/(factorial(2)*factorial((v-2)))
nc<-4*(2^(v/2))+4-2*v
nc<-round(nc)
###########################factorial
i=1
matf<-matrix(,nrow=k,ncol=0)
while(i<=v){
x<-c((rep(-1,(2^(v-i)))),(rep(1,(2^(v-i)))))
x1<-t(rep(x,k/length(x)))
matf<-cbind(matf,t(x1))
i=i+1
}
#######################################axial
matA<-matrix(,nrow=0,ncol=v)
d1<-diag(a,nrow=v,ncol=v)
d2<-diag(-a,nrow=v,ncol=v)
d=1
while(d<=v){
matA<-rbind(matA,d1[d,],d2[d,])
d=d+1
}
matA<-matA*(-1)
#######################################
matfA<-rbind(matf,matA)
############################central
matfAc<-rbind(matfA,matrix(0,nrow=nc,ncol=v))
#################################square terms
p=1
while(p<=v){
x1<-matrix(,nrow=nrow(matfAc),ncol=0)
x1<-(matfAc[,p])^2
matfAc<-cbind(matfAc,x1)
p=p+1
}
b1=1
b2=1
while(b1<v){
b2=b1+1
while(b2<=v){
mat2<-matrix(,nrow=0,ncol=1)
mat2<-matfAc[,b1]*matfAc[,b2]
matfAc<-cbind(matfAc,mat2)
b2=b2+1
}
b1=b1+1
}
###########################
matfAc<-cbind(matrix(1,nrow=nrow(matfAc),ncol=1),matfAc)
colnames(matfAc)<-NULL
#
cccsd<-matfAc
if(randomization==T){
mat3<-matrix(,nrow=0,ncol=1+v+v+cbn)
rand<-sample(1:(k+(2*v)+nc),(k+(2*v)+nc),replace = FALSE)
for(m in rand){
x11<-matrix(,nrow=1,ncol=1+v+cbn+v)
x11<-matfAc[m,]
mat3<-rbind(mat3,x11)
}
##########################
matfAc<-mat3
rownames(matfAc)<-NULL
cccrand<-matfAc
}
######################################x prime x
if(type=="ccc"){
if(randomization==FALSE){
# print("CCC (Standard)",quote=F)
message("CCC (Standard)")
print(cccsd[,2:(v+1)])
matfAc<-cccsd
}else{
# print("CCC (Randomized)",quote=F)
message("CCC (Randomized)")
print(cccrand[,2:(v+1)])
matfAc<-cccrand
}
x_prime_x<-t(matfAc)%*% matfAc
#################################variance
k1=1
var<-c()
while(k1<=(k+2*v+nc))
{
V=t(matfAc[k1,])
b<-t(V)
v_y_hat<-V %*%solve(x_prime_x) %*% b
var<-c(var,v_y_hat)
k1<-k1+1
}
if(variance==TRUE){
variance_of_esitmated_response<-round(var,digits = 3 )
v1<-table(variance_of_esitmated_response)
}
}
########################
#######CCI
if(type=="cci"){
cci<-matfAc[,2:(v+1)]/a
#############adding columns(sq terms + interactions)
p=1
while(p<=v){
x1<-matrix(,nrow=nrow(cci),ncol=0)
x1<-(cci[,p])^2
cci<-cbind(cci,x1)
p=p+1
}
##############################
b1=1
b2=2
while(b1<b2){
while(b2<=v){
mat2<-matrix(,nrow=k,ncol=0)
mat2<-cci[,b1]*cci[,b2]
cci<-cbind(cci,mat2)
b2=b2+1
}
b2=b2-1
b1=b1+1
}
###########################
cci<-cbind(matrix(1,nrow=nrow(cci),ncol=1),cci)
colnames(cci)<-NULL
##########
x_prime_x<-t(cci)%*% cci
k1=1
var<-c()
while(k1<=k+2*v+nc)
{
V=t(cci[k1,])
b<-t(V)
v_y_hat<-V %*%solve(x_prime_x) %*% b
var<-c(var,v_y_hat)
k1<-k1+1
}
if(randomization==T){
#print("CCI (Randomized)",quote=F)
message("CCI (Randomized)")
}else{
#print("CCI (Standard)",quote=F)
message("CCI (Standard)")
}
print(cci[,2:(v+1)])
if(variance==TRUE){
#if(unique==FALSE){
variance_of_esitmated_response<-round(var,digits = 3 )
v2<-table(variance_of_esitmated_response)
}
}
############CCF
if(type=="ccf"){
ccf<-matfAc[,2:(v+1)]
ccf[ccf==a]<-1
ccf[ccf==-a]<- -1
#############adding columns(sq terms + interactions)
p=1
while(p<=v){
x1<-matrix(,nrow=nrow(ccf),ncol=0)
x1<-(ccf[,p])^2
ccf<-cbind(ccf,x1)
p=p+1
}
##############################
b1=1
b2=2
while(b1<b2){
while(b2<=v){
mat2<-matrix(,nrow=k,ncol=0)
mat2<-ccf[,b1]*ccf[,b2]
ccf<-cbind(ccf,mat2)
b2=b2+1
}
b2=b2-1
b1=b1+1
}
###########################
ccf<-cbind(matrix(1,nrow=nrow(ccf),ncol=1),ccf)
colnames(ccf)<-NULL
##########
x_prime_x<-t(ccf)%*% ccf
k1=1
var<-c()
while(k1<=k+2*v+nc)
{
V=t(ccf[k1,])
b<-t(V)
v_y_hat<-V %*%solve(x_prime_x) %*% b
var<-c(var,v_y_hat)
k1<-k1+1
}
variance_of_esitmated_response<-round(var,digits = 3 )
v3<-table(variance_of_esitmated_response)
if(randomization==T){
# print("CCF (Randomized)",quote=F)
message("CCF (Randomized)")
}else{
#print("CCF (Standard)",quote=F)
message("CCF (Standard)")
}
print(ccf[,2:(v+1)])
}
if(type=="ccf"){
final<-ccf[,2:(v+1)]
}
if(type=="cci"){
final<-cci[,2:(v+1)]
}
if(type=="ccc"){
final<-matfAc[,2:(v+1)]
}
if(variance==TRUE){
x_matrix<-final
x_matrix<-cbind(matrix(1,nrow=nrow(x_matrix),ncol=1),x_matrix)
colnames(x_matrix)<-NULL
x_prime_x<-t(x_matrix)%*%x_matrix
moment_mat<-(1/nrow(x_matrix))*x_prime_x
#print("Moment Matrix",quote=FALSE)
message("Moment Matrix")
print(moment_mat)
if(type=="ccf"){
print(v3)
}
if(type=="cci"){
print(v2)
}
if(type=="ccc"){
print(v1)
}
}
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.