Nothing
#' Central Composite Designs (CCD) with original levels
#'
#' @param v Number of input factors, v(>2)
#' @param type Type of central composite design i.e. ccc or cci or ccf. "ccc" is for Central Composite Circumscribed designs, "cci" is for Central Composite Inscribed designs and "ccf" is for Central Composite Face Centered designs
#' @param randomization It is for generating the randomized layout of the design. It takes either TRUE or FALSE and by default, it is set to FALSE
#' @param variance This is for generating the moment matrix and prediction variance of the design based on a second order model. It gives unique prediction variance along with its frequencies. It takes either TRUE or FALSE and by default, it is set to FALSE
#'@param min_L A vector of minimum levels of the factors
#'@param max_L A vector of maximum levels of the factors
#'@description This function generates Central Composite Designs (CCD) with original levels along with coded levels for a given number of input factors (v). The CCD constitute combinations of factorial points, axial points and center points. Three types of CCDs can be generated using this function i.e. ccc or cci or ccf. "ccc" is for Central Composite Circumscribed designs, "cci" is for Central Composite Inscribed designs and "ccf" is for Central Composite Face Centered designs. It gives the randomized layout of the design along with the moment matrix and prediction variance.
#' @return Central Composite Designs (CCD) for a given number of input factors (v) with original levels
#' @note Here, the factorial portion consists of 2^v (full factorial) combinations and there is no upper limit for the number of input factors,v (>2). To get a CCD with smaller runs, one may use fractional factorial (of resolution V) in place of full factorial.
#' @examples
#'
#'library(AsymmetricSORDs)
#'CCD_original(5,'ccc',c(10,15,20,25,30),c(15,20,25,30,35),FALSE,FALSE)
#'
#'@references
#'1) G.E.P. Box and K.B. Wilson (1951)." On the experimental attainment of optimum conditions".
#'
#'2) M. Hemavathi, Shashi Shekhar, Eldho Varghese, Seema Jaggi, Bikas Sinha & Nripes Kumar Mandal (2022)<DOI: 10.1080/03610926.2021.1944213>. "Theoretical developments in response surface designs: an informative review and further thoughts".
#'@export
CCD_original<-function(v,type,min_L,max_L,randomization=FALSE,variance=FALSE){
k<-2^v
a<-(k)^(1/4)
cbn<-(factorial(v))/(factorial(2)*factorial((v-2)))
nc<-4*(2^(v/2))+4-2*v
nc<-round(nc)
aa<-c(-((2^v)^(1/4)), -1, 0, 1,((2^v)^(1/4)))
a_CCC<-aa ##########Circumscribed (CCC)#############
a_CCI<-aa/((2^v)^(1/4))##########Inscribed (CCI)#############
a_CCF<-c(-1, -1, 0, 1,1)##########Face Centered (CCF)#############
####################################CCC
if(type=="ccc"){
x_ccc<-matrix(,length(min_L),ncol=5)
for (j in 1:length(min_L))
{
for (i in 1:5) {
x_ccc[j,i]<-(((max_L[j]-min_L[j])/2)*a_CCC[i])+((min_L[j]+max_L[j])/2)
}
}
}
#########################CCI
if(type=="cci"){
x_cci<-matrix(,length(min_L),ncol=5)
for (j in 1:length(min_L))
{
for (i in 1:5) {
x_cci[j,i]<-(((max_L[j]-min_L[j])/2)*a_CCI[i])+((min_L[j]+max_L[j])/2)
}
}
}
#############################CCF
if(type=="ccf"){
x_ccf<-matrix(,length(min_L),ncol=5)
for (j in 1:length(min_L))
{
for (i in 1:5) {
x_ccf[j,i]<-(((max_L[j]-min_L[j])/2)*a_CCF[i])+((min_L[j]+max_L[j])/2)
}
}
}
###########################factorial
i=1
matf<-matrix(,nrow=k,ncol=0)
while(i<=v){
x<-c((rep(-1,(2^(v-i)))),(rep(1,(2^(v-i)))))
x1<-t(rep(x,k/length(x)))
matf<-cbind(matf,t(x1))
i=i+1
}
#######################################axial
matA<-matrix(,nrow=0,ncol=v)
d1<-diag(a,nrow=v,ncol=v)
d2<-diag(-a,nrow=v,ncol=v)
d=1
while(d<=v){
matA<-rbind(matA,d1[d,],d2[d,])
d=d+1
}
matA<-matA*(-1)
#######################################
matfA<-rbind(matf,matA)
############################central
matfAc<-rbind(matfA,matrix(0,nrow=nc,ncol=v))
#################################square terms
###########################
cccsd<-matfAc
##########################
#######################################randomization
mat3<-matrix(,nrow=(k+(2*v)+nc),ncol=v)
rand<-sample(1:(k+(2*v)+nc),(k+(2*v)+nc),replace = FALSE)
for(m in rand){
x1<-matrix(,nrow=1,ncol=v)
x1<-matfAc[m,]
mat3<-rbind(mat3,t(x1))
}
##########################
matfAc<-mat3[((k+(2*v)+nc+1):(2*(k+(2*v)+nc))),]
rownames(matfAc)<-NULL
cccrand<-matfAc
####################CCC
######################
######################################x prime x
if(type=="ccc"){
if(randomization==FALSE){
#print("CCC coded (Standard)")
message("CCC coded (Standard)")
print(cccsd)
matfAc<-cccsd}else{
#print("CCC coded (Randomized)")
message("CCC coded (Randomized)")
print(cccrand)
matfAc<-cccrand
}
}
########################
#######CCI
if(type=="cci"){
cci<-matfAc/a
#############adding columns(sq terms + interactions)
if(randomization==T){
#print("CCI coded (Randomized)")
message("CCI coded (Randomized)")
}else{
#print("CCI coded (Standard)")
message("CCI coded (Standard)")
}
print(cci)
}
############CCF
if(type=="ccf"){
ccf<-matfAc
ccf[ccf==a]<-1
ccf[ccf==-a]<- -1
if(randomization==T){
#print("CCF coded (Randomized)")
message("CCF coded (Randomized)")
}else{
#print("CCF coded (Standard)")
message("CCF coded (Standard)")
}
print(ccf)
}
if(type=="ccc"){
raw<-matfAc
}
if(type=="cci"){
raw<-cci
}
if(type=="ccf"){
raw<-ccf
}
s=1
while(s<=v){
if(type=="ccc"){
o<-c(x_ccc[s,])
raw[which(raw[,s]==0),s]<-o[3]
raw[which(raw[,s]==-1),s]<-o[2]
raw[which(raw[,s]==-a),s]<-o[1]
raw[which(raw[,s]==1),s]<-o[4]
raw[which(raw[,s]==a),s]<-o[5]
s=s+1
}
if(type=="cci"){
o<-c(x_cci[s,])
raw[which(raw[,s]==0),s]<-o[3]
raw[which(raw[,s]==-1),s]<-o[1]
raw[which(raw[,s]==-1/a),s]<-o[2]
raw[which(raw[,s]==1),s]<-o[5]
raw[which(raw[,s]==1/a),s]<-o[4]
s=s+1
}
if(type=="ccf"){
o<-c(x_ccf[s,])
raw[which(raw[,s]==0),s]<-o[3]
raw[which(raw[,s]==-1),s]<-o[1]
raw[which(raw[,s]==-1),s]<-o[2]
raw[which(raw[,s]==1),s]<-o[5]
raw[which(raw[,s]==1),s]<-o[4]
s=s+1
}
}
if(type=="ccc"){
if(randomization==T){
#print("CCC original (Randomized)")
message("CCC original (Randomized)")
}else{
#print("CCC original (Standard)")
message("CCC original (Standard)")
}
}
if(type=="cci"){
if(randomization==T){
#print("CCI original (Randomized)")
message("CCI original (Randomized)")
}else{
#print("CCI original (Standard)")
message("CCI original (Standard)")
}
}
if(type=="ccf"){
if(randomization==T){
#print("CCF original (Randomized)")
message("CCF original (Randomized)")
}else{
# print("CCF original (Standard)")
message("CCF original (Standard)")
}
}
print(raw)
#############################
p=1
while(p<=v){
x1<-matrix(,nrow=nrow(raw),ncol=0)
x1<-(raw[,p])^2
raw<-cbind(raw,x1)
p=p+1
}
b1=1
b2=1
while(b1<v){
b2=b1+1
while(b2<=v){
mat2<-matrix(,nrow=0,ncol=1)
mat2<-raw[,b1]*raw[,b2]
raw<-cbind(raw,mat2)
b2=b2+1
}
b1=b1+1
}
x_matrix<-raw
x_matrix<-cbind(matrix(1,nrow=nrow(x_matrix),ncol=1),x_matrix)
colnames(x_matrix)<-NULL
x_prime_x<-t(x_matrix)%*%x_matrix
moment_mat<-(1/nrow(x_matrix))*x_prime_x
if(variance==TRUE){
#print("Moment Matrix",quote=FALSE)
message("Moment Matrix")
print(moment_mat)
k1=1
var<-c()
while(k1<=k+2*v+nc){
V=t(x_matrix[k1,])
b<-t(V)
v_y_hat<-V%*%solve(x_prime_x) %*% b
var<-c(var,v_y_hat)
k1<-k1+1
}
variance_of_esitmated_response<-round(var,digits = 3 )
print(table(variance_of_esitmated_response))
}
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.