Description Usage Arguments Details Examples
Automated Multiple Regression Modelling
1 2 3 |
outcome |
The dependent variable of the hierarchical model |
block1 |
A character vector, with names of variables. The first block of independent variables. |
... |
A character vector, with names of variables. Subsequent blocks of independent variables. |
dataset |
A data frame containing variables refered to in
|
type |
Family argument to pass to |
assumptions.check |
Boolean, if TRUE, then assumption checks are run and output is produced. If FALSE, only model summary and coefficient tables are produced. |
outliers.check |
Determines how many observations to display for outliers check. Default is significant observations. "All" shows all residual and Cook's D values. |
transform.outcome |
A boolean. If TRUE, a variable transformation of the outcome is substituted in the final model if outcome is non-normal. NOT IMPLEMENTED YET. |
Calls other functions to generate model objects and test them, given
specified model parameters and other options. Formatted output is produced
via model_output
1 2 |
REGRESSION OUTPUT
Durbin-Watson = 2.11 p value = 0.4729
Partial Regression plots (all relationships should be linear):
Plot of studentized residuals: uniform distibution across predicted values requiredCorrelation Matrix for model (correlation >.70 indicates severe multicollinearity)
y lag.quarterly.revenue price.index income.level
y 1.0000 0.9978 -0.9895 0.9839
lag.quarterly.revenue 0.9978 1.0000 -0.9894 0.9817
price.index -0.9895 -0.9894 1.0000 -0.9539
income.level 0.9839 0.9817 -0.9539 1.0000
Variance inflation factor (<10 desired):
lag.quarterly.revenue price.index income.level
194.85 78.58 45.52
Standardized Residuals (observations > 3.00 problematic):
No significant outliers
Cook's distance (values >.2 problematic):
1963.25
0.8918
Normality of standardized model residuals: Shapiro-Wilk (p-value): 0.5586
Model change statistics
R R^2 Adj R^2 SE Est. Delta R^2 F Change df1 df2 p Fch Sig
Model 1 0.9978 0.9956 0.9955 0.0212 0.9956 8360.3793 1 37 0 ***
Model 2 0.9988 0.9977 0.9975 0.0159 0.0021 15.4599 2 35 0 ***
Model 1 : y ~ lag.quarterly.revenue
Model 2 : y ~ lag.quarterly.revenue + price.index + income.level
Model Coefficients
Model term estimate std.error statistic p.value sig
Model 1 (Intercept) 0.04169 0.10138 0.4112 0.6833
Model 1 lag.quarterly.revenue 0.99827 0.01092 91.4351 0.0000 ***
Model 2 (Intercept) 4.97077 1.24046 4.0072 0.0003 ***
Model 2 lag.quarterly.revenue 0.37305 0.11418 3.2673 0.0024 **
Model 2 price.index -0.81887 0.17152 -4.7742 0.0000 ***
Model 2 income.level 0.75435 0.14454 5.2189 0.0000 ***
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.