BAS | R Documentation |
Implementation of Bayesian Model Averaging in linear models using stochastic or deterministic sampling without replacement from posterior distributions. Prior distributions on coefficients are of the form of Zellner's g-prior or mixtures of g-priors. Options include the Zellner-Siow Cauchy Priors, the Liang et al hyper-g priors, Local and Global Empirical Bayes estimates of g, and other default model selection criteria such as AIC and BIC. Sampling probabilities may be updated based on the sampled models.
_PACKAGE
Merlise Clyde,
Maintainer: Merlise Clyde <clyde@stat.duke.edu>
Clyde, M. Ghosh, J. and Littman, M. (2010) Bayesian Adaptive
Sampling for Variable Selection and Model Averaging. Journal of
Computational Graphics and Statistics. 20:80-101
\Sexpr[results=rd]{tools:::Rd_expr_doi("10.1198/jcgs.2010.09049")}
Clyde, M. and George, E. I. (2004) Model uncertainty. Statist. Sci., 19,
81-94.
\Sexpr[results=rd]{tools:::Rd_expr_doi("10.1214/088342304000000035")}
Clyde, M. (1999) Bayesian Model Averaging and Model Search Strategies (with discussion). In Bayesian Statistics 6. J.M. Bernardo, A.P. Dawid, J.O. Berger, and A.F.M. Smith eds. Oxford University Press, pages 157-185.
Li, Y. and Clyde, M. (2018) Mixtures of g-priors in Generalized Linear Models. Journal of the American Statistical Association, 113:524, 1828-1845 \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1080/01621459.2018.1469992")}
Liang, F., Paulo, R., Molina, G., Clyde, M. and Berger, J.O. (2008) Mixtures
of g-priors for Bayesian Variable Selection. Journal of the American
Statistical Association. 103:410-423.
bas.lm
bas.glm
Other bas methods:
bas.lm()
,
coef.bas()
,
confint.coef.bas()
,
confint.pred.bas()
,
diagnostics()
,
fitted.bas()
,
force.heredity.bas()
,
image.bas()
,
plot.confint.bas()
,
predict.bas()
,
predict.basglm()
,
summary.bas()
,
update.bas()
,
variable.names.pred.bas()
data("Hald")
hald.gprior = bas.lm(Y ~ ., data=Hald, alpha=13, prior="g-prior")
# more complete demos
demo(BAS.hald)
## Not run:
demo(BAS.USCrime)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.