coef.bas | R Documentation |
Extract conditional posterior means and standard deviations, marginal posterior means and standard deviations, posterior probabilities, and marginal inclusions probabilities under Bayesian Model Averaging from an object of class 'bas'
## S3 method for class 'bas'
coef(object, n.models, estimator = "BMA", ...)
## S3 method for class 'coef.bas'
print(x, digits = max(3, getOption("digits") - 3), ...)
object |
object of class 'bas' created by BAS |
n.models |
Number of top models to report in the printed summary, for coef the default is to use all models. To extract summaries for the Highest Probability Model, use n.models=1 or estimator="HPM". |
estimator |
return summaries for a selected model, rather than using BMA. Options are 'HPM' (highest posterior probability model) ,'MPM' (median probability model), and 'BMA' |
... |
other optional arguments |
x |
object of class 'coef.bas' to print |
digits |
number of significant digits to print |
Calculates posterior means and (approximate) standard deviations of the regression coefficients under Bayesian Model averaging using g-priors and mixtures of g-priors. Print returns overall summaries. For fully Bayesian methods that place a prior on g, the posterior standard deviations do not take into account full uncertainty regarding g. Will be updated in future releases.
coefficients
returns an object of class coef.bas with the
following:
conditionalmeans |
a matrix with conditional posterior means for each model |
conditionalsd |
standard deviations for each model |
postmean |
marginal posterior means of each regression coefficient using BMA |
postsd |
marginal posterior standard deviations using BMA |
postne0 |
vector of posterior inclusion probabilities, marginal probability that a coefficient is non-zero |
With highly correlated variables, marginal summaries may not be
representative of the joint distribution. Use plot.coef.bas
to
view distributions. The value reported for the intercept is
under the centered parameterization. Under the Gaussian error
model it will be centered at the sample mean of Y.
Merlise Clyde clyde@duke.edu
Liang, F., Paulo, R., Molina, G., Clyde, M. and Berger, J.O.
(2005) Mixtures of g-priors for Bayesian Variable Selection. Journal of the
American Statistical Association. 103:410-423.
\Sexpr[results=rd]{tools:::Rd_expr_doi("10.1198/016214507000001337")}
bas
, confint.coef.bas
Other bas methods:
BAS
,
bas.lm()
,
confint.coef.bas()
,
confint.pred.bas()
,
diagnostics()
,
fitted.bas()
,
force.heredity.bas()
,
image.bas()
,
plot.confint.bas()
,
predict.bas()
,
predict.basglm()
,
summary.bas()
,
update.bas()
,
variable.names.pred.bas()
data("Hald")
hald.gprior = bas.lm(Y~ ., data=Hald, n.models=2^4, alpha=13,
prior="ZS-null", initprobs="Uniform", update=10)
coef.hald.gprior = coefficients(hald.gprior)
coef.hald.gprior
plot(coef.hald.gprior)
confint(coef.hald.gprior)
#Estimation under Median Probability Model
coef.hald.gprior = coefficients(hald.gprior, estimator="MPM")
coef.hald.gprior
plot(coef.hald.gprior)
plot(confint(coef.hald.gprior))
coef.hald.gprior = coefficients(hald.gprior, estimator="HPM")
coef.hald.gprior
plot(coef.hald.gprior)
confint(coef.hald.gprior)
# To add estimation under Best Predictive Model
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.