Nothing
#' Generic print method for BCC objects
#'
#' @param x An object of class BCC.
#' @param ... further arguments passed to or from other methods.
#' @return Void function prints model information, no object return
#' @examples
#' # get data from the package
#' data(epil2)
#' fit.BCC <- epil2
#' print(fit.BCC)
#' @export
#' @useDynLib BCClong, .registration=TRUE
print.BCC <- function(x, ...) {
cat("Total number of individual:\n")
print(x$N[1])
cat("\n")
cat("Number of features:\n")
print(x$R[1])
cat("\n")
cat("Mean adherence parameters by features:\n")
print(colMeans(x$ALPHA))
cat("\n")
cat("Cluster proportions for global clusters:\n")
print(colMeans(x$PPI))
cat("\n")
cat("Globle clusters table:\n")
print(table(x$cluster.global))
cat("\n")
cat("Local clusters tables:\n")
for (i in 1:length(x$cluster.local))
print(table(x$cluster.local[[i]]))
cat("\n")
cat("Available components:\n")
print(names(x))
}
#' Generic summary method for BCC objects
#'
#' @param object An object of class BCC.
#' @param ... further arguments passed to or from other methods.
#' @return Void function summarize model information, no object return
#' @examples
#' # get data from the package
#' data(epil2)
#' fit.BCC <- epil2
#' summary(fit.BCC)
#' @export
#' @method summary BCC
#' @useDynLib BCClong, .registration=TRUE
summary.BCC <- function(object, ...){
cat("Total number of individual:\n")
print(object$N[1])
cat("\n")
cat("Number of features:\n")
print(object$R[1])
cat("\n")
cat("Cluster proportions statistics for global clusters:\n")
print(summary(object$PPI))
cat("\n")
cat("Globle clusters table:\n")
print(table(object$cluster.global))
cat("\n")
cat("Adherence parameters statistics by feature:\n")
print(summary(object$ALPHA))
cat("\n")
cat("Local clusters statistics by feature:\n")
for (i in 1:length(object$summary.stat$GA)){
cat("Cluster statistics for feature", i, ":\n")
print(object$summary.stat$GA[[i]])
}
cat("\n")
cat("Variance-covariance matrix statistics for random effects by feature:\n")
for (i in 1:length(object$summary.stat$SIGMA.SQ.U)){
cat("Variance-covariance matrix statistics for feature", i, ":\n")
print(object$summary.stat$SIGMA.SQ.U[[i]])
}
cat("\n")
cat("Residual variance of continuous features statistics by feature:\n")
for (i in 1:length(object$summary.stat$SIGMA.SQ.E)){
cat("Residual variance statistics for feature", i, ":\n")
print(object$summary.stat$SIGMA.SQ.E[[i]])
}
cat("\n")
cat("Local clusters tables by feature:\n")
for (i in 1:length(object$cluster.local)){
cat("Clusters table for feature", i, ":\n")
print(table(object$cluster.local[[i]]))
}
}
#' Generic plot method for BCC objects
#'
#' @param x An object of class BCC.
#' @param ... further arguments passed to or from other methods.
#' @return Void function plot model object, no object return
#' @examples
#' # get data from the package
#' data(epil1)
#' fit.BCC <- epil1
#' plot(fit.BCC)
#' @export
#' @method plot BCC
#' @useDynLib BCClong, .registration=TRUE
plot.BCC <- function(x, ...){
ncluster <- x$num.cluster
nfeature <- x$R
color <- seq(ncluster)
old_par <- par(no.readonly = TRUE)
on.exit(par(old_par))
par(ask = TRUE)
for (i in 1:nfeature){
temp <- trajplot(fit=x,feature.ind=i,
which.cluster = "local.cluster",
title= bquote(paste("Local Clustering (",hat(alpha)[1] ==
.(round(x$alpha[1],2)),")")),
xlab="time (months)",ylab=paste("Feature", i),color=color)
plot(temp)
temp1 <- trajplot(fit=x,feature.ind=i,
which.cluster = "global.cluster",
title="Global Clustering",xlab="time (months)",
ylab=paste("Feature", i),color=color)
plot(temp1)
}
traceplot(fit=x, parameter="PPI",ylab="pi",xlab="MCMC samples")
traceplot(fit=x, parameter="ALPHA",ylab="alpha",xlab="MCMC samples")
for (i in 1:ncluster){
for (j in 1:nfeature){
traceplot(fit=x,cluster.indx = i, feature.indx=j,parameter="GA",
ylab="GA",xlab="MCMC samples", title = paste("Feature", j))
}
}
}
# [END]
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.