View source: R/BIFIE.logistreg.R
| BIFIE.logistreg | R Documentation | 
Computes logistic regression. Explained variance R^2 is computed
by the approach of McKelvey and Zavoina.
BIFIE.logistreg(BIFIEobj, dep=NULL, pre=NULL, formula=NULL,
    group=NULL, group_values=NULL, se=TRUE, eps=1E-8, maxiter=100)
## S3 method for class 'BIFIE.logistreg'
summary(object,digits=4,...)
## S3 method for class 'BIFIE.logistreg'
coef(object,...)
## S3 method for class 'BIFIE.logistreg'
vcov(object,...)
BIFIEobj | 
 Object of class   | 
dep | 
 String for the dependent variable in the regression model  | 
pre | 
 Vector of predictor variables. If the intercept should be included,
then use the variable   | 
formula | 
 An R formula object which can be applied instead of
providing   | 
group | 
 Optional grouping variable(s)  | 
group_values | 
 Optional vector of grouping values. This can be omitted and grouping values will be determined automatically.  | 
se | 
 Optional logical indicating whether statistical inference based on replication should be employed.  | 
eps | 
 Convergence criterion for parameters  | 
maxiter | 
 Maximum number of iterations  | 
object | 
 Object of class   | 
digits | 
 Number of digits for rounding output  | 
... | 
 Further arguments to be passed  | 
A list with following entries
stat | 
 Data frame with regression coefficients  | 
output | 
 Extensive output with all replicated statistics  | 
... | 
 More values  | 
survey::svyglm,
stats::glm
For linear regressions see BIFIE.linreg.
#############################################################################
# EXAMPLE 1: TIMSS dataset | Logistic regression
#############################################################################
data(data.timss2)
data(data.timssrep)
# create BIFIE.dat object
bdat <- BIFIEsurvey::BIFIE.data( data.list=data.timss2, wgt=data.timss2[[1]]$TOTWGT,
                      wgtrep=data.timssrep[, -1 ] )
#**** Model 1: Logistic regression - prediction of migrational background
res1 <- BIFIEsurvey::BIFIE.logistreg( BIFIEobj=bdat, dep="migrant",
           pre=c("one","books","lang"), group="female", se=FALSE )
summary(res1)
## Not run: 
# same model, but with formula specification and standard errors
res1a <- BIFIEsurvey::BIFIE.logistreg( BIFIEobj=bdat,
              formula=migrant ~ books + lang, group="female"  )
summary(res1a)
#############################################################################
# SIMULATED EXAMPLE 2: Comparison of stats::glm and BIFIEsurvey::BIFIE.logistreg
#############################################################################
#*** (1) simulate data
set.seed(987)
N <- 300
x1 <- stats::rnorm(N)
x2 <- stats::runif(N)
ypred <- -0.75+.2*x1 + 3*x2
y <- 1*( stats::plogis(ypred) > stats::runif(N) )
data <- data.frame( "y"=y, "x1"=x1, "x2"=x2 )
#*** (2) estimation logistic regression using glm
mod1 <- stats::glm( y ~ x1 + x2, family="binomial")
#*** (3) estimation logistic regression using BIFIEdata
# create BIFIEdata object by defining 30 Jackknife zones
bifiedata <- BIFIEsurvey::BIFIE.data.jack( data, jktype="JK_RANDOM", ngr=30 )
summary(bifiedata)
# estimate logistic regression
mod2 <- BIFIEsurvey::BIFIE.logistreg( bifiedata, formula=y ~ x1+x2 )
#*** (4) compare results
summary(mod2)    # BIFIE.logistreg
summary(mod1)   # glm
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.