Description Details Author(s) References Examples
This package provides two Bayesian models for detecting the association between a set of rare genetic variants and a trait that can be continuous, ordinal or binary. BLVCM detects interaction effect and is dedicated to twin design while it can also be applied to independent samples. HBMR incorporates genotype uncertainty information and can be applied to either independent or family samples. Furhtermore, it deals with continuous, binary and ordinal traits.
Package: | BMRV |
Type: | Package |
Version: | 1.32 |
Date: | 2016-10-29 |
License: | GPL (>=2) |
blvcm hbmr
Liang He
Maintainer: Liang He <liang.he@duke.edu>
He, L., Sillanp<e4><e4>, M. J., Ripatti, S., & Pitk<e4>niemi, J. (2014). Bayesian Latent Variable Collapsing Model for Detecting Rare Variant Interaction Effect in Twin Study. Genetic epidemiology, 38(4), 310-324.
He, L., Pitk<e4>niemi, J., Sarin, A. P., Salomaa, V., Sillanp<e4><e4>, M. J., & Ripatti, S. (2015). Hierarchical Bayesian Model for Rare Variant Association Analysis Integrating Genotype Uncertainty in Human Sequence Data. Genetic epidemiology, 39(2), 89-100.
1 2 | data(blvcm_data)
temp<- blvcm(blvcm_data$pheno_data, blvcm_data$geno_data[,1:3], iter=10000, model = 3)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.