Description Usage Arguments Details Value Author(s) References See Also Examples
Density, distribution, quantile function, random number
generation for the BMT distribution, with p3
and p4
tails
weights (κ_l and κ_r) or asymmetry-steepness
parameters (ζ and ξ) and p1
and p2
domain
(minimum and maximum) or location-scale (mean and standard deviation)
parameters.
1 2 3 4 5 6 7 8 9 10 | dBMT(x, p3, p4, type.p.3.4 = "t w", p1 = 0, p2 = 1, type.p.1.2 = "c-d",
log = FALSE)
pBMT(q, p3, p4, type.p.3.4 = "t w", p1 = 0, p2 = 1, type.p.1.2 = "c-d",
lower.tail = TRUE, log.p = FALSE)
qBMT(p, p3, p4, type.p.3.4 = "t w", p1 = 0, p2 = 1, type.p.1.2 = "c-d",
lower.tail = TRUE, log.p = FALSE)
rBMT(n, p3, p4, type.p.3.4 = "t w", p1 = 0, p2 = 1, type.p.1.2 = "c-d")
|
x, q |
vector of quantiles. |
p3, p4 |
tails weights (κ_l and κ_r) or asymmetry-steepness (ζ and ξ) parameters of the BMT distribution. |
type.p.3.4 |
type of parametrization asociated to p3 and p4. "t w" means tails weights parametrization (default) and "a-s" means asymmetry-steepness parametrization. |
p1, p2 |
domain (minimum and maximum) or location-scale (mean and standard deviation) parameters of the BMT ditribution. |
type.p.1.2 |
type of parametrization asociated to p1 and p2. "c-d" means domain parametrization (default) and "l-s" means location-scale parametrization. |
log, log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are P[X ≤ x], otherwise, P[X > x]. |
p |
vector of probabilities. |
n |
number of observations. If |
The BMT distribution with tails weights and domain parametrization
(type.p.3.4 = "t w"
and type.p.1.2 = "c-d"
) has quantile
function
(d - c) [3 t_p ( 1 - t_p )^2 κ_l - 3 t_p^2 ( 1 - t_p ) κ_r + t_p^2 ( 3 - 2 t_p ) ] + c
where 0 ≤ p ≤ 1, t_p = 1/2 - \cos ( [\arccos ( 2 p - 1 ) - 2 π] / 3 ), and 0 < κ_l < 1 and 0 < κ_r < 1 are, respectively, related to left and right tail weights or curvatures.
The BMT coefficient of asymmetry -1 < ζ < 1 is
κ_r - κ_l
The BMT coefficient of steepness 0 < ξ < 1 is
(κ_r + κ_l - |κ_r - κ_l|) / (2 (1 - |κ_r - κ_l|))
for |κ_r - κ_l| < 1.
dBMT
gives the density, pBMT
the distribution function,
qBMT
the quantile function, and rBMT
generates random
deviates.
The length of the result is determined by n
for rBMT
, and is
the maximum of the lengths of the numerical arguments for the other
functions.
The numerical arguments other than n
are recycled to the length of
the result. Only the first elements of the logical arguments are used.
If type.p.3.4 == "t w"
, p3 < 0
and p3 > 1
are errors
and return NaN
.
If type.p.3.4 == "a-s"
, p3 < -1
and p3 > 1
are errors
and return NaN
.
p4 < 0
and p4 > 1
are errors and return NaN
.
If type.p.1.2 == "c-d"
, p1 >= p2
is an error and returns
NaN
.
If type.p.1.2 == "l-s"
, p2 <= 0
is an error and returns
NaN
.
Camilo Jose Torres-Jimenez [aut,cre] cjtorresj@unal.edu.co and Alvaro Mauricio Montenegro Diaz [ths]
Torres-Jimenez, C. J. and Montenegro-Diaz, A. M. (2017, September), An alternative to continuous univariate distributions supported on a bounded interval: The BMT distribution. ArXiv e-prints.
Torres-Jimenez, C. J. (2017, September), Comparison of estimation methods for the BMT distribution. ArXiv e-prints.
Torres-Jimenez, C. J. (2018), The BMT Item Response Theory model: A new skewed distribution family with bounded domain and an IRT model based on it, PhD thesis, Doctorado en ciencias - Estadistica, Universidad Nacional de Colombia, Sede Bogota.
BMTcentral
, BMTdispersion
,
BMTskewness
, BMTkurtosis
,
BMTmoments
for descriptive measures or moments.
BMTchangepars
for parameter conversion between different
parametrizations.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 | # BMT on [0,1] with left tail weight equal to 0.25 and
# right tail weight equal to 0.75
z <- seq(0, 1, length.out = 100)
F1 <- pBMT(z, 0.25, 0.75, "t w")
Q1 <- qBMT(F1, 0.25, 0.75, "t w")
max(abs(z - Q1))
f1 <- dBMT(z, 0.25, 0.75, "t w")
r1 <- rBMT(100, 0.25, 0.75, "t w")
layout(matrix(c(1,2,1,3), 2, 2))
hist(r1, freq = FALSE, xlim = c(0,1))
lines(z, f1)
plot(z, F1, type="l")
plot(F1, Q1, type="l")
# BMT on [0,1] with asymmetry coefficient equal to 0.5 and
# steepness coefficient equal to 0.5
F2 <- pBMT(z, 0.5, 0.5, "a-s")
Q2 <- qBMT(F2, 0.5, 0.5, "a-s")
f2 <- dBMT(z, 0.5, 0.5, "a-s")
r2 <- rBMT(100, 0.5, 0.5, "a-s")
max(abs(f1 - f2))
max(abs(F1 - F2))
max(abs(Q1 - Q2))
# BMT on [-1.783489, 3.312195] with
# left tail weight equal to 0.25 and
# right tail weight equal to 0.75
x <- seq(-1.783489, 3.312195, length.out = 100)
F3 <- pBMT(x, 0.25, 0.75, "t w", -1.783489, 3.312195, "c-d")
Q3 <- qBMT(F3, 0.25, 0.75, "t w", -1.783489, 3.312195, "c-d")
max(abs(x - Q3))
f3 <- dBMT(x, 0.25, 0.75, "t w", -1.783489, 3.312195, "c-d")
r3 <- rBMT(100, 0.25, 0.75, "t w", -1.783489, 3.312195, "c-d")
layout(matrix(c(1,2,1,3), 2, 2))
hist(r3, freq = FALSE, xlim = c(-1.783489,3.312195))
lines(x, f3)
plot(x, F3, type="l")
plot(F3, Q3, type="l")
# BMT with mean equal to 0, standard deviation equal to 1,
# asymmetry coefficient equal to 0.5 and
# steepness coefficient equal to 0.5
f4 <- dBMT(x, 0.5, 0.5, "a-s", 0, 1, "l-s")
F4 <- pBMT(x, 0.5, 0.5, "a-s", 0, 1, "l-s")
Q4 <- qBMT(F4, 0.5, 0.5, "a-s", 0, 1, "l-s")
r4 <- rBMT(100, 0.5, 0.5, "a-s", 0, 1, "l-s")
max(abs(f3 - f4))
max(abs(F3 - F4))
max(abs(Q3 - Q4))
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.