gradF: Deriving the first derivatives of the log likelihood function...

Description Usage Arguments Value Author(s)

View source: R/gradF.R

Description

gradF() derives the first derivatives of the log likelihood function of the log-binomial model.

Usage

1
gradF(theta, y, x)

Arguments

theta

A numeric vector containing the initial values of the model parameters.

y

A numeric vector containing the dependent variable of the model.

x

The model matrix.

Value

A numeric vector containing the first derivatives of the log likelihood function of the log-binomial model.

Author(s)

Adam Bekhit, Jakob Schöpe


BSW documentation built on March 22, 2021, 5:07 p.m.

Related to gradF in BSW...