Description Usage Arguments Value Author(s) References Examples
bsw()
fits a log-binomial model using a modified Newton-type algorithm (BSW algorithm) for solving the maximum likelihood estimation problem under linear inequality constraints.
1 |
formula |
An object of class |
data |
A data frame containing the variables in the model. |
maxit |
A positive integer giving the maximum number of iterations. |
An object of S4 class "bsw"
containing the following slots:
call |
An object of class |
formula |
An object of class |
coefficients |
A numeric vector containing the estimated model parameters. |
iter |
A positive integer indicating the number of iterations. |
converged |
A logical constant that indicates whether the model has converged. |
y |
A numerical vector containing the dependent variable of the model. |
x |
The model matrix. |
data |
A data frame containing the variables in the model. |
Adam Bekhit, Jakob Schöpe
Wagenpfeil S (1996) Dynamische Modelle zur Ereignisanalyse. Herbert Utz Verlag Wissenschaft, Munich, Germany
Wagenpfeil S (1991) Implementierung eines SQP-Verfahrens mit dem Algorithmus von Ritter und Best. Diplomarbeit, TUM, Munich, Germany
1 2 3 4 5 |
Loading required package: Matrix
Loading required package: matrixStats
Loading required package: quadprog
Call:
bsw(formula = y ~ x, data = data.frame(y = y, x = x))
Convergence: TRUE
Coefficients:
Estimate Std. Error z value Pr(>|z|) RR 2.5%
(Intercept) -4.18775672 1.50865369 -2.775824 0.005506205 0.0151803 0.0007890636
x 0.04221886 0.02707557 1.559297 0.118926114 1.0431227 0.9892103412
97.5%
(Intercept) 0.2920443
x 1.0999734
Iterations: 4
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.