View source: R/get.weighted.power.R
get.weighted.power | R Documentation |
Get weighted type I error (WE) and power(WP) cross all scenarios. including family wise (fwer) or trial wise (twer) or false discovery rate (fdr).
get.weighted.power(object, Q, s0 = 100, s1 = 0)
object |
returned by post.infer. |
Q |
a vector of length B for the efficacy cutoff in each basket. |
s0 |
Setting s0=100 the weighted power reduces to type I error under global null. Please use this default. |
s1 |
Setting s1=0 gives equal weight for calculating weighted power across scenarios. Please use this default. |
It returns a list with error.tw
for average basket-wise type I error rate (BWER) under global null,
bwer
for BWERs for all null baskets,
power.cdr
for average true positive rate (TPR) across scenarios except global null,
power.ccr
for average correct classification rate (CCR) across scenarios except global null.
N <- rbind(
c(10, 25),
c(10, 25),
c(10, 25),
c(10, 25),
c(10, 25)) # interim sample size and total sample size for each indication
scenarios <- rbind( c(0.15, 0.15, 0.15, 0.15, 0.15), c(0.3, 0.3, 0.3, 0.3, 0.3) )
res <- generate.data(N = N, ORRs = scenarios, ntrial = 1000, seed = 343809)
post <- post.infer(res, pnull = rep(0.15,5), stopbounds = cbind(c(1,1,1,1,1)),
ModelFit = "localPP", method = "PEB", a = 2, delta = 0.3)
(Q <- get.Q.bwer(post, alpha = 0.1, digits = 3, Qclust = rep(1, 5)))
(powers <- get.weighted.power(object = post, Q = Q))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.