trace.beta: Trace Plot

Description Usage Arguments References See Also Examples

View source: R/bridge-trace.R

Description

Trace plot using expectation maximization.

Usage

1
2
trace.beta(y, X, alpha=0.5, ratio.grid=exp(seq(-20,20,0.1)),
           tol=1e-9, max.iter=30, use.cg=FALSE, plot.it=FALSE)

Arguments

y

An N dimensional vector of data.

X

An N x P dimensional design matrix.

alpha

A parameter.

ratio.grid

A grid of ratio=tau/sigma.

tol

The threshold at which the algorithm terminates.

max.iter

The maximum number of iterations to use.

use.cg

Use the conjugate gradient method.

plot.it

Plot it.

References

Nicolas G. Poslon, James G. Scott, and Jesse Windle. The Bayesian Bridge. http://arxiv.org/abs/1109.2279.

See Also

bridge.reg, bridge.EM.

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
# Load the diabetes data...
data(diabetes, package="BayesBridge");
cov.name = colnames(diabetes$x);
y = diabetes$y;
X = diabetes$x;

# Center the data.
y = y - mean(y);
mX = colMeans(X);
for(i in 1:442){
    X[i,] = X[i,] - mX;
}

# Expectation maximization.
out = trace.beta(y, X);

Example output



BayesBridge documentation built on May 29, 2017, 10:40 a.m.