Description Usage Arguments Value Author(s) References Examples
From the copula package:
Generating random variates of an exponentially tilted stable distribution of the form
tS(alpha, 1, (cos(alpha*pi/2)V0)^(1/alpha), V0*1_(alpha==1), h*1_(alpha!=1)),
with parameters alpha in (0,1], V0 in (0,Inf), and h in [0,Inf) and corresponding Laplace-Stieltjes transform
exp(-V0((h+t)^alpha-h^alpha)), t in [0,Inf];
see the references for more details about this distribution.
1 | retstable.ld(num=1, alpha=1, V0=1, h=1)
|
num |
Number of random variates to generate |
alpha |
parameter in (0,1]. |
V0 |
vector of values in (0,Inf) (for example, when sampling nested Clayton copulas, these are random variates from F0), that is, the distribution corresponding to psi0. |
h |
parameter in [0,Inf). |
A vector of variates from tS(alpha, 1, .....); see above.
Marius Hofert, Martin Maechler
Hofert, M. (2011) Efficiently sampling nested Archimedean copulas, Computational Statistics & Data Analysis 55, 57–70.
Hofert, M. (2012), Sampling exponentially tilted stable distributions, ACM Transactions on Modeling and Computer Simulation 22, 1, page numbers: to be announced.
1 2 3 4 5 6 7 8 9 10 11 | ## Draw random variates from an exponentially tilted stable distribution
## with given alpha, V0, and h = 1
alpha <- .2
N = 200
V0 <- rgamma(N, 1)
rETS <- retstable.ld(N, alpha, V0)
## Distribution plot the random variates -- log-scaled
hist(log(rETS), prob=TRUE)
lines(density(log(rETS)), col=2)
rug (log(rETS))
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.