Nothing
test_that("update_mallows works", {
set.seed(1)
data_first_batch <- potato_visual[1:4, ]
mod_init <- compute_mallows(
data = setup_rank_data(data_first_batch),
compute_options = set_compute_options(nmc = 100, burnin = 0)
)
data_second_batch <- potato_visual[5:8, ]
mod_second <- update_mallows(
model = mod_init,
new_data = setup_rank_data(rankings = data_second_batch),
smc_options = set_smc_options(n_particles = 10)
)
expect_error(
update_mallows(model = mod_init, new_data = data_second_batch),
"new_data must be an object of class BayesMallowsData"
)
pi <- compute_posterior_intervals(mod_second)
expect_equal(pi$hpdi, "[0.423,0.753]")
expect_equal(mod_second$alpha$value[[9]], 0.753246865159393)
data_third_batch <- potato_visual[9:12, ]
mod_final <- update_mallows(
model = mod_second, new_data = setup_rank_data(rankings = data_third_batch)
)
expect_equal(mod_final$rho$value[169], 18)
expect_error(
update_mallows(model = mod_second, new_data = data_third_batch),
"new_data must be an object of class BayesMallowsData"
)
})
test_that("update_mallows can start from prior", {
set.seed(1)
prior_samples <- sample_prior(100, 20, set_priors(gamma = 2, lambda = .1))
mod1 <- update_mallows(
prior_samples,
new_data = setup_rank_data(potato_visual[1, , drop = FALSE]),
smc_options = set_smc_options(n_particles = 100)
)
expect_error(
update_mallows(prior_samples, new_data = potato_visual[1, , drop = FALSE]),
"new_data must be an object of class BayesMallowsData"
)
mod2 <- update_mallows(
mod1,
new_data = setup_rank_data(potato_visual[2, , drop = FALSE])
)
expect_equal(mod2$alpha_samples[[56]], 3.51628380350389)
})
test_that("update_mallows handles estimated partition function", {
set.seed(199)
dat <- t(replicate(3, sample(22)))
fit <- estimate_partition_function(
method = "asymptotic",
alpha_vector = seq(from = 0, to = 1, by = .1),
n_items = 22,
metric = "spearman",
n_iterations = 50
)
mod <- compute_mallows(
data = setup_rank_data(dat),
model_options = set_model_options(metric = "spearman"),
compute_options = set_compute_options(nmc = 10, burnin = 0),
pfun_estimate = fit
)
expect_equal(mod$pfun_estimate, fit)
newdat <- t(replicate(3, sample(22)))
mod1 <- update_mallows(
model = mod,
new_data = setup_rank_data(newdat),
model_options = set_model_options(metric = "spearman"),
smc_options = set_smc_options(n_particles = 5)
)
expect_equal(mod1$pfun_estimate, fit)
newdat <- t(replicate(3, sample(22)))
mod2 <- update_mallows(
model = mod1,
new_data = setup_rank_data(newdat)
)
expect_equal(mod2$pfun_estimate, fit)
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.