Nothing
#' @name improvement
#' @rdname improvement
#'
#' @title BLC: Improvement
#'
#' @description Calculates the improvement of each age, based on the resulting chains of the beta parameter from a fitted blc model.
#'
#' @usage
#' improvement(obj, prob = 0.95)
#'
#' @param obj A `BLC` object, result of a call to blc() function.
#' @param prob A real number that represents the credibility level of the intervals.
#'
#' @return A data.frame with the improvement values of each age, as well as their credible intervals.
#'
#' @examples
#' ## Importing log-mortality data from Portugal:
#' data(PT)
#' Y <- PT
#'
#' ## Fitting the model
#' fit = blc(Y = Y, M = 100, bn = 20)
#'
#' ## Improvement:
#' improvement(fit)
#' improvement(fit, prob = 0.9) #90% credible intervals
#'
#'
#' @export
improvement <- function(obj, prob = 0.95) {
objClass <- class(obj)
supportedClasses <- c("BLC", "ARBLC")
if (!any(objClass %in% supportedClasses)) {
stop("Invalid object type")
}
lower <- (1-prob)/2
upper <- (1+prob)/2
improvement <- apply(obj$beta[ ,(obj$bn+1):obj$M], 1, function (x) mean(1 - exp(-x)))
improvement.int <- apply(obj$beta[ ,(obj$bn+1):obj$M], 1, function (x) quantile(1 - exp(-x),
probs = c(lower, upper)))
data.frame(improvement = improvement, lower.lim = improvement.int[1,], upper.lim = improvement.int[2,])
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.