Nothing
#' Summary method for `bayes_mode` objects
#'
#' @param object An object of class `bayes_mode`.
#' @param ... Not used.
#'
#' @export
summary.bayes_mode <- function(object, ...) {
modes = object$modes
p1 = object$p1
cat("Posterior probability of multimodality is", 1-p1, "\n")
cat("\nInference results on the number of modes:")
cat("\n p_nb_modes")
head_print(t(object$p_nb_modes))
cat("\nInference results on mode locations:")
cat("\n p_loc")
head_print(t(object$p_mode_loc))
}
#' Summary method for `mix_mode` objects
#'
#' @param object An object of class `mix_mode`.
#' @param ... Not used.
#'
#' @export
summary.mix_mode <- function(object, ...) {
Nb_m = length(object$mode_estimates)
algo = object$algo
d = object$dist
K = object$K
if (is.na(d)) {
d = object$dist_type
}
if (Nb_m == 1) {
m = "Mode"
} else {
m = "Modes"
}
cat(m, "of a", d, "mixture with", K, "components.")
cat("\n- Number of modes found:", Nb_m)
cat("\n- Mode estimation technique:", object$algo, "algorithm")
cat("\n- Estimates of mode locations:")
cat("\n mode_estimates")
head_print(round(object$mode_estimates),3)
}
#' Summary method for `mixture` objects
#'
#' @param object An object of class `mixture`.
#' @param ... Not used.
#'
#' @export
summary.mixture <- function(object, ...) {
cat("Estimated mixture distribution.")
cat("\n- Mixture type:", object$dist_type)
cat("\n- Number of components:", object$K)
cat("\n- Distribution family:", object$dist)
cat("\n- Number of distribution variables:", object$nb_var)
cat("\n- Names of variables:",
object$pars_names[object$pars_names!="eta"])
cat("\n- Parameter estimates:")
cat("\n pars")
head_print(object$pars)
}
#' Summary method for `bayes_mixture` objects
#' The summary of MCMC draws is given by the function
#' `summarise_draws` from package \pkg{posterior}.
#' @param object An object of class `bayes_mixture`.
#' @param ... Not used.
#'
#' @importFrom posterior summarise_draws
#'
#' @export
summary.bayes_mixture <- function(object, ...) {
d = object$dist
K = object$K
if (is.na(d)) {
d = object$dist_type
}
cat("Mixture estimated with a Bayesian MCMC method.")
cat("\n- Mixture type:", object$dist_type)
cat("\n- Number of components:", object$K)
cat("\n- Distribution family:", object$dist)
cat("\n- Number of distribution variables:", object$nb_var)
cat("\n- Names of variables:",
object$pars_names[object$pars_names!="eta"])
cat("\n\nSummary of MCMC output after burnin:\n")
print(summarise_draws(object$mcmc))
cat(paste0("this table can be reproduced with: summarise_draws(",deparse(substitute(object)),"$mcmc)"))
message(cat("\n\nNote that label-switching might occur in the MCMC draws becayse BayesMultiMode does not carry out post-processing.",
"\nWhile label-switching does not affect mode inference it can affect diagnostic checks.\n"))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.