Nothing
# Load the example dataset
dataset <- list(
"X" = simData[[1]]$X,
"t" = simData[[1]]$time,
"di" = simData[[1]]$status
)
# Run a Bayesian Cox model
## Initial value: null model without covariates
initial <- list("gamma.ini" = rep(0, ncol(dataset$X)))
# Prior parameters
hyperparPooled <- list(
"c0" = 2, # prior of baseline hazard
"tau" = 0.0375, # sd (spike) for coefficient prior
"cb" = 20, # sd (slab) for coefficient prior
"pi.ga" = 0.02, # prior variable selection probability for standard Cox models
"a" = -4, # hyperparameter in MRF prior
"b" = 0.1, # hyperparameter in MRF prior
"G" = simData$G, # hyperparameter in MRF prior
"lambda" = 3,
"nu0" = 0.05,
"nu1" = 5
)
# Run a 'Pooled' Bayesian Cox model with graphical learning
set.seed(3346141)
BayesSurvive_wrap <- function(use_cpp = FALSE) {
suppressWarnings(
BayesSurvive(
survObj = list(dataset), model.type = "Pooled", MRF.G = FALSE,
hyperpar = hyperparPooled, initial = initial, nIter = 3,
verbose = FALSE, cpp = use_cpp
)
)
}
fit_R <- BayesSurvive_wrap(use_cpp = FALSE)
fit_C <- BayesSurvive_wrap(use_cpp = TRUE)
test_that("R and C++ objects are similar", {
expect_equal(fit_R$call, fit_C$call)
expect_equal(fit_R$input, fit_C$input)
for (obj in names(fit_R$output)[2]) {
expect_equal(fit_R$output[[obj]], fit_C$output[[obj]], tolerance = 1)
}
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.