performBayesianMCP | R Documentation |
Performs Bayesian MCP Test step, as described in Fleischer et al. (2022). Tests for a dose-response effect using a model-based multiple contrast test based on the (provided) posterior distribution. In particular for every dose-response candidate the posterior probability is calculated that the contrast is bigger than 0 (based on the posterior distribution of the dose groups). In order to obtain significant test decision we consider the maximum of the posterior probabilities across the different models. This maximum is compared with a (multiplicity adjusted) critical value (on the probability scale).
performBayesianMCP(posterior_list, contr, crit_prob_adj)
posterior_list |
An object derived with getPosterior with information about the (mixture) posterior distribution per dose group |
contr |
An object of class 'optContr' as created by the getContr() function. It contains the contrast matrix to be used for the testing step. |
crit_prob_adj |
A getCritProb object, specifying the critical value to be used for the testing (on the probability scale) |
Bayesian MCP test result, with information about p-values for the individual dose-response shapes and overall significance
Fleischer F, Bossert S, Deng Q, Loley C, Gierse J. 2022. Bayesian MCPMod. Pharmaceutical Statistics. 21(3): 654-670. doi:10.1002/pst.2193
mods <- DoseFinding::Mods(linear = NULL,
linlog = NULL,
emax = c(0.5, 1.2),
exponential = 2,
doses = c(0, 0.5, 2,4, 8))
dose_levels <- c(0, 0.5, 2, 4, 8)
sd_posterior <- c(2.8,3,2.5,3.5,4)
contr_mat <- getContr(
mods = mods,
dose_levels = dose_levels,
sd_posterior = sd_posterior)
critVal <- getCritProb(
mods = mods,
dose_weights = c(50, 50, 50, 50, 50), #reflecting the planned sample size
dose_levels = dose_levels,
alpha_crit_val = 0.05)
prior_list <- list(Ctrl = RBesT::mixnorm(comp1 = c(w = 1, m = 0, s = 5), sigma = 2),
DG_1 = RBesT::mixnorm(comp1 = c(w = 1, m = 1, s = 12), sigma = 2),
DG_2 = RBesT::mixnorm(comp1 = c(w = 1, m = 1.2, s = 11), sigma = 2) ,
DG_3 = RBesT::mixnorm(comp1 = c(w = 1, m = 1.3, s = 11), sigma = 2) ,
DG_4 = RBesT::mixnorm(comp1 = c(w = 1, m = 2, s = 13), sigma = 2))
mu <- c(0, 1, 1.5, 2, 2.5)
se <- c(5, 4, 6, 7, 8)
posterior_list <- getPosterior(
prior_list = prior_list,
mu_hat = mu,
se_hat = se)
performBayesianMCP(posterior_list = posterior_list,
contr = contr_mat,
crit_prob_adj = critVal)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.