performBayesianMCPMod | R Documentation |
Performs Bayesian MCP Test step and modeling in a combined fashion. See performBayesianMCP() function for MCP Test step and getModelFits() for the modelling step
performBayesianMCPMod(posterior_list, contr, crit_prob_adj, simple = FALSE)
posterior_list |
An object of class 'postList' as created by getPosterior() containing information about the (mixture) posterior distribution per dose group |
contr |
An object of class 'optContr' as created by the getContr() function. It contains the contrast matrix to be used for the testing step. |
crit_prob_adj |
A getCritProb object, specifying the critical value to be used for the testing (on the probability scale). |
simple |
Boolean variable, defining whether simplified fit will be applied. Passed to the getModelFits() function. Default FALSE. |
Bayesian MCP test result as well as modelling result.
mods <- DoseFinding::Mods(linear = NULL,
linlog = NULL,
emax = c(0.5, 1.2),
exponential = 2,
doses = c(0, 0.5, 2,4, 8))
dose_levels <- c(0, 0.5, 2, 4, 8)
sd_posterior <- c(2.8, 3, 2.5, 3.5, 4)
contr_mat <- getContr(
mods = mods,
dose_levels = dose_levels,
sd_posterior = sd_posterior)
critVal <- getCritProb(
mods = mods,
dose_weights = c(50, 50, 50, 50, 50), #reflecting the planned sample size
dose_levels = dose_levels,
alpha_crit_val = 0.05)
prior_list <- list(Ctrl = RBesT::mixnorm(comp1 = c(w = 1, m = 0, s = 5), sigma = 2),
DG_1 = RBesT::mixnorm(comp1 = c(w = 1, m = 1, s = 12), sigma = 2),
DG_2 = RBesT::mixnorm(comp1 = c(w = 1, m = 1.2, s = 11), sigma = 2) ,
DG_3 = RBesT::mixnorm(comp1 = c(w = 1, m = 1.3, s = 11), sigma = 2) ,
DG_4 = RBesT::mixnorm(comp1 = c(w = 1, m = 2, s = 13), sigma = 2))
mu <- c(0, 1, 1.5, 2, 2.5)
se <- c(5, 4, 6, 7, 8)
posterior_list <- getPosterior(
prior_list = prior_list,
mu_hat = mu,
se_hat = se)
performBayesianMCPMod(posterior_list = posterior_list,
contr = contr_mat,
crit_prob_adj = critVal,
simple = FALSE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.