Description Usage Arguments Value References Examples
View source: R/MLE.Frank.Pareto.R
Maximum likelihood estimation for bivariate dependent competing risks data under the Frank copula with the Pareto margins and fixed θ.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16  | MLE.Frank.Pareto(
  t.event,
  event1,
  event2,
  Theta,
  Alpha1.0 = 1,
  Alpha2.0 = 1,
  Gamma1.0 = 1,
  Gamma2.0 = 1,
  epsilon = 1e-05,
  d = exp(10),
  r.1 = 6,
  r.2 = 6,
  r.3 = 6,
  r.4 = 6
)
 | 
t.event | 
 Vector of the observed failure times.  | 
event1 | 
 Vector of the indicators for the failure cause 1.  | 
event2 | 
 Vector of the indicators for the failure cause 2.  | 
Theta | 
 Copula parameter θ.  | 
Alpha1.0 | 
 Initial guess for the scale parameter α_{1} with default value 1.  | 
Alpha2.0 | 
 Initial guess for the scale parameter α_{2} with default value 1.  | 
Gamma1.0 | 
 Initial guess for the shape parameter γ_{1} with default value 1.  | 
Gamma2.0 | 
 Initial guess for the shape parameter γ_{2} with default value 1.  | 
epsilon | 
 Positive tunning parameter in the NR algorithm with default value 10^{-5}.  | 
d | 
 Positive tunning parameter in the NR algorithm with default value e^{10}.  | 
r.1 | 
 Positive tunning parameter in the NR algorithm with default value 1.  | 
r.2 | 
 Positive tunning parameter in the NR algorithm with default value 1.  | 
r.3 | 
 Positive tunning parameter in the NR algorithm with default value 1.  | 
r.4 | 
 Positive tunning parameter in the NR algorithm with default value 1.  | 
n | 
 Sample size.  | 
count | 
 Iteration number.  | 
random | 
 Randomization number.  | 
Alpha1 | 
 Positive scale parameter for the Pareto margin (failure cause 1).  | 
Alpha2 | 
 Positive scale parameter for the Pareto margin (failure cause 2).  | 
Gamma1 | 
 Positive shape parameter for the Pareto margin (failure cause 1).  | 
Gamma2 | 
 Positive shape parameter for the Pareto margin (failure cause 2).  | 
MedX | 
 Median lifetime due to failure cause 1.  | 
MedY | 
 Median lifetime due to failure cause 2.  | 
MeanX | 
 Mean lifetime due to failure cause 1.  | 
MeanY | 
 Mean lifetime due to failure cause 2.  | 
logL | 
 Log-likelihood value under the fitted model.  | 
AIC | 
 AIC value under the fitted model.  | 
BIC | 
 BIC value under the fitted model.  | 
Shih J-H, Lee W, Sun L-H, Emura T (2018), Fitting competing risks data to bivariate Pareto models, Communications in Statistics - Theory and Methods, doi: 10.1080/03610926.2018.1425450.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81  | t.event = c(72,40,20,65,24,46,62,61,60,60,59,59,49,20, 3,58,29,26,52,20,
            51,51,31,42,38,69,39,33, 8,13,33, 9,21,66, 5,27, 2,20,19,60,
            32,53,53,43,21,74,72,14,33, 8,10,51, 7,33, 3,43,37, 5, 6, 2,
            5,64, 1,21,16,21,12,75,74,54,73,36,59, 6,58,16,19,39,26,60,
            43, 7, 9,67,62,17,25, 0, 5,34,59,31,58,30,57, 5,55,55,52, 0,
            51,17,70,74,74,20, 2, 8,27,23, 1,52,51, 6, 0,26,65,26, 6, 6,
            68,33,67,23, 6,11, 6,57,57,29, 9,53,51, 8, 0,21,27,22,12,68,
            21,68, 0, 2,14,18, 5,60,40,51,50,46,65, 9,21,27,54,52,75,30,
            70,14, 0,42,12,40, 2,12,53,11,18,13,45, 8,28,67,67,24,64,26,
            57,32,42,20,71,54,64,51, 1, 2, 0,54,69,68,67,66,64,63,35,62,
            7,35,24,57, 1, 4,74, 0,51,36,16,32,68,17,66,65,19,41,28, 0,
            46,63,60,59,46,63, 8,74,18,33,12, 1,66,28,30,57,50,39,40,24,
            6,30,58,68,24,33,65, 2,64,19,15,10,12,53,51, 1,40,40,66, 2,
            21,35,29,54,37,10,29,71,12,13,27,66,28,31,12, 9,21,19,51,71,
            76,46,47,75,75,49,75,75,31,69,74,25,72,28,36, 8,71,60,14,22,
            67,62,68,68,27,68,68,67,67, 3,49,12,30,67, 5,65,24,66,36,66,
            40,13,40, 0,14,45,64,13,24,15,26, 5,63,35,61,61,50,57,21,26,
            11,59,42,27,50,57,57, 0, 1,54,53,23, 8,51,27,52,52,52,45,48,
            18, 2, 2,35,75,75, 9,39, 0,26,17,43,53,47,11,65,16,21,64, 7,
            38,55, 5,28,38,20,24,27,31, 9, 9,11,56,36,56,15,51,33,70,32,
            5,23,63,30,53,12,58,54,36,20,74,34,70,25,65, 4,10,58,37,56,
            6, 0,70,70,28,40,67,36,23,23,62,62,62, 2,34, 4,12,56, 1, 7,
            4,70,65, 7,30,40,13,22, 0,18,64,13,26, 1,16,33,22,30,53,53,
            7,61,40, 9,59, 7,12,46,50, 0,52,19,52,51,51,14,27,51, 5, 0,
            41,53,19)
event1 = c(0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,
           0,0,1,0,0,0,1,0,1,1,0,1,1,1,1,0,0,1,1,0,
           1,0,0,1,1,0,0,1,0,0,0,1,0,1,0,0,1,0,1,1,
           1,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,
           0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
           0,0,0,0,0,0,1,1,0,0,0,0,0,1,1,0,0,1,0,0,
           0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,1,0,1,0,
           0,0,0,1,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,
           0,0,0,0,0,0,1,1,0,1,0,0,0,0,1,0,0,0,0,0,
           1,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,
           0,0,0,0,0,0,0,1,0,0,1,1,0,1,0,0,1,1,0,0,
           1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,
           0,0,1,0,1,0,0,0,0,1,1,1,1,0,0,0,1,1,0,0,
           1,1,1,1,0,0,1,0,1,1,1,1,1,1,1,0,1,1,0,1,
           0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,
           0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
           0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,
           0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,
           1,0,0,0,0,0,0,1,0,0,0,0,1,0,1,0,1,0,0,1,
           1,1,0,1,1,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,
           0,0,0,1,0,0,0,0,1,0,0,1,0,1,0,1,1,0,1,0,
           1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,
           1,0,0,1,0,0,0,1,0,1,0,0,1,0,0,0,1,1,0,1,
           1,1,1,0,0,0,1,0,0,0,0,0,0,0,0,1,1,0,0,0,
           0,0,1)
event2 = c(0,1,1,0,0,1,0,0,0,0,0,0,0,1,1,0,1,1,0,1,
           0,0,0,1,1,0,0,1,0,0,1,0,0,0,0,1,1,0,0,0,
           0,0,0,0,0,0,0,0,1,1,1,0,1,0,1,1,0,1,0,0,
           0,0,1,0,1,1,1,0,0,0,0,1,1,1,1,1,1,1,1,1,
           1,1,1,0,1,1,1,1,1,1,0,1,0,1,0,1,0,0,0,1,
           0,1,1,0,0,1,0,0,1,1,1,0,0,0,0,1,1,0,1,1,
           0,1,0,0,1,1,0,0,0,1,1,0,0,1,1,1,0,1,0,0,
           1,0,1,0,0,1,0,0,1,0,1,1,0,1,1,1,0,0,0,1,
           0,1,1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,1,0,1,
           0,0,1,1,0,1,0,1,1,1,0,1,0,0,0,0,0,0,1,0,
           1,1,1,0,1,1,1,0,1,1,0,0,0,0,0,0,0,0,1,1,
           0,0,0,0,1,0,1,0,1,1,1,1,0,1,1,1,0,1,1,1,
           1,1,0,0,0,1,0,1,0,0,0,0,0,0,0,1,0,0,0,1,
           0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,
           0,0,1,0,0,1,0,0,1,0,0,1,0,1,1,0,0,1,1,1,
           1,1,0,0,1,0,0,0,0,1,1,1,1,0,1,1,1,0,1,0,
           1,1,1,1,1,1,0,1,1,1,1,0,0,1,0,0,1,1,1,0,
           1,0,0,1,1,0,0,1,1,0,0,1,1,1,1,0,0,0,1,1,
           0,1,1,1,0,0,1,0,1,1,1,1,0,1,0,0,0,1,0,0,
           0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,1,0,1,0,1,
           1,1,0,0,1,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,
           0,1,0,0,1,1,0,1,1,1,0,0,0,1,0,1,0,0,1,1,
           0,0,0,0,1,1,1,0,1,0,1,1,0,1,1,1,0,0,1,0,
           0,0,0,1,0,1,0,1,0,1,0,1,0,0,0,0,0,0,1,1,
           1,0,0)
library(Bivariate.Pareto)
set.seed(10)
MLE.Frank.Pareto(t.event,event1,event2,Theta = -5)
 | 
Loading required package: compound.Cox
Loading required package: numDeriv
Loading required package: survival
$n
[1] 483
$Iteration
[1] 8
$Randomization
[1] 23
$Alpha1
   Estimate          SE    CI.lower    CI.upper 
0.011890202 0.008106601 0.003124999 0.045240618 
$Alpha2
   Estimate          SE    CI.lower    CI.upper 
0.014879042 0.007560389 0.005496162 0.040280086 
$Gamma1
 Estimate        SE  CI.lower  CI.upper 
0.5757746 0.3132021 0.1982565 1.6721591 
$Gamma2
 Estimate        SE  CI.lower  CI.upper 
0.9646710 0.3815124 0.4443675 2.0941905 
$MedX
 Estimate        SE  CI.lower  CI.upper 
196.20602  56.40517 111.68876 344.67927 
$MedY
Estimate       SE CI.lower CI.upper 
70.66449  7.41208 57.53309 86.79301 
$MeanX
[1] "Unavaliable"
$MeanY
[1] "Unavaliable"
$logL
[1] -1916.066
$AIC
[1] 3840.131
$BIC
[1] 3856.851
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.