| fvbmpartiald | R Documentation | 
Computes the partial derivatives for all unique parameter elements of the bias vector and interaction matrix of a fully-visible Boltzmann machine, for some random length n string of spin variables (i.e. each element is -1 or 1) and some fitted parameter values.
fvbmpartiald(data, model)
| data | Vector of length n containing binary spin variables. | 
| model | List generated from  | 
A list containing 2 objects: a vector containing the partial derivatives corresponding to the bias parameters bvec, and a matrix containing the partial derivatives corresponding to the interaction parameters Mmat.
Andrew T. Jones and Hien D. Nguyen
H.D. Nguyen and I.A. Wood (2016), Asymptotic normality of the maximum pseudolikelihood estimator for fully-visible Boltzmann machines, IEEE Transactions on Neural Networks and Learning Systems, vol. 27, pp. 897-902.
# Generate num=1000 random strings of n=3 binary spin variables under bvec and Mmat.
num <- 1000
bvec <- c(0,0.5,0.25)
Mmat <- matrix(0.1,3,3) - diag(0.1,3,3)
data <- rfvbm(num,bvec,Mmat)
# Fit a fully visible Boltzmann machine to data, starting from parameters bvec and Mmat.
model <- fitfvbm(data,bvec,Mmat)
# Compute the partial derivatives evaluated at the first observation of data.
fvbmpartiald(data,model)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.