Nothing
## -----------------------------------------------------------------------------
set.seed(1) # set a random seed for reproducibility.
library(CAESAR.Suite) # load the package of CAESAR.Suite method
library(Seurat)
library(ggplot2)
library(msigdbr)
library(dplyr)
## ----eval=FALSE---------------------------------------------------------------
# githubURL <- "https://github.com/XiaoZhangryy/CAESAR.Suite/blob/master/vignettes_data/BC_scRNAList.rda?raw=true"
# BC_scRNAList_file <- file.path(tempdir(), "BC_scRNAList.rda")
# download.file(githubURL, BC_scRNAList_file, mode='wb')
# load(BC_scRNAList_file)
#
# print(BC_scRNAList)
#
# githubURL <- "https://github.com/XiaoZhangryy/CAESAR.Suite/blob/master/vignettes_data/BC_XeniumList.rda?raw=true"
# BC_XeniumList_file <- file.path(tempdir(), "BC_XeniumList.rda")
# download.file(githubURL, BC_XeniumList_file, mode='wb')
# load(BC_XeniumList_file)
#
# print(BC_XeniumList)
#
# githubURL <- "https://github.com/XiaoZhangryy/CAESAR.Suite/blob/master/vignettes_data/BC_feature_imgList.rda?raw=true"
# BC_feature_imgList_file <- file.path(tempdir(), "BC_feature_imgList.rda")
# download.file(githubURL, BC_feature_imgList_file, mode='wb')
# load(BC_feature_imgList_file)
#
# print(sapply(BC_feature_imgList, dim))
## ----eval=FALSE---------------------------------------------------------------
# # BC_scRNAList <- lapply(BC_scRNAList, function(seu) {
# # CreateSeuratObject(
# # counts = seu@assays$RNA@counts,
# # meta.data = seu@meta.data,
# # min.features = 5,
# # min.cells = 1
# # )
# # })
# #
# # print(BC_scRNAList)
# #
# #
# # BC_XeniumList <- lapply(BC_XeniumList, function(seu) {
# # CreateSeuratObject(
# # counts = seu@assays$RNA@counts,
# # meta.data = seu@meta.data,
# # min.features = 5,
# # min.cells = 1
# # )
# # })
# #
# # print(BC_XeniumList)
# #
# # BC_feature_imgList <- lapply(1:2, function(i) {
# # BC_feature_imgList[[i]][colnames(BC_XeniumList[[i]]), ]
# # })
## ----eval=FALSE---------------------------------------------------------------
# # match genes
# common_genes <- Reduce(intersect, c(
# lapply(BC_scRNAList, rownames),
# lapply(BC_XeniumList, rownames)
# ))
#
# print(length(common_genes))
#
# # all common genes are used as variable genes, as only around 300 genes here
# BC_scRNAList <- lapply(BC_scRNAList, function(seu) {
# seu <- seu[common_genes, ]
# seu <- NormalizeData(seu)
# VariableFeatures(seu) <- common_genes
# seu
# })
#
# BC_XeniumList <- lapply(BC_XeniumList, function(seu) {
# seu <- seu[common_genes, ]
# seu <- NormalizeData(seu)
# VariableFeatures(seu) <- common_genes
# seu
# })
#
# print(BC_scRNAList)
# print(BC_XeniumList)
## ----eval=FALSE---------------------------------------------------------------
# BC_scRNAList <- lapply(BC_scRNAList, CAESAR.coembedding, q = 50)
## ----eval=FALSE---------------------------------------------------------------
# # calculate cell-gene distance and identify signature genes
# sg_sc_List <- lapply(BC_scRNAList, function(seu) {
# print(table(seu$CellType))
#
# Idents(seu) <- seu$CellType
# find.sig.genes(seu, reduction.name = "caesar")
# })
#
# str(sg_sc_List)
## ----eval=FALSE---------------------------------------------------------------
# markerList <- lapply(sg_sc_List, marker.select, overlap.max = 1)
#
# print(markerList)
## ----eval=FALSE---------------------------------------------------------------
# BC_XeniumList <- lapply(1:2, function(i) {
# seu <- BC_XeniumList[[i]]
#
# # the spatial coordinates
# pos <- seu@meta.data[, c("x_centroid", "y_centroid")]
# print(head(pos))
#
# # the image feature
# feature_img <- BC_feature_imgList[[i]]
#
# seu <- CAESAR.coembedding.image(
# seu, feature_img, pos, reduction.name = "caesar", q = 50)
# seu
# })
# names(BC_XeniumList) <- paste0("BC", 1:2)
#
# print(BC_XeniumList)
## ----eval=FALSE---------------------------------------------------------------
# # convert marker list to marker frequency matrix
# marker.freq <- markerList2mat(markerList)
#
# # perform annotation using CAESAR and save results to Seurat object
# BC_XeniumList <- lapply(
# BC_XeniumList, CAESAR.annotation, marker.freq = marker.freq,
# reduction.name = "caesar", add.to.meta = TRUE
# )
# print(colnames(BC_XeniumList[[1]]@meta.data))
## ----eval=FALSE---------------------------------------------------------------
# # set up colors
# cols <- setNames(
# c(
# "#fdc086", "#386cb0", "#b30000", "#FBEA2E", "#731A73",
# "#FF8C00", "#F898CB", "#4DAF4A", "#a6cee3", "#737373"
# ),
# c(
# "B-cells", "CAFs", "Cancer Epithelial", "Endothelial", "Myeloid",
# "Normal Epithelial", "Plasmablasts", "PVL", "T-cells", "unassigned"
# )
# )
# celltypes <- c(
# "B-cells", "CAFs", "Cancer Epithelial", "Endothelial", "Myeloid",
# "Normal Epithelial", "Plasmablasts", "PVL", "T-cells", "unassigned"
# )
#
# BC_XeniumList <- lapply(BC_XeniumList, function(seu) {
# Idents(seu) <- factor(seu$CAESARunasg, levels = celltypes)
#
# pos <- seu@meta.data[, c("x_centroid", "y_centroid")]
# colnames(pos) <- paste0("pos", 1:2)
# seu@reductions[["pos"]] <- CreateDimReducObject(
# embeddings = as.matrix(pos),
# key = paste0("pos", "_"), assay = "RNA"
# )
# seu
# })
## ----fig.width=12, fig.height=15.75, eval=FALSE-------------------------------
# plots <- lapply(BC_XeniumList, function(seu) {
# DimPlot(seu, reduction = "pos", cols = cols, pt.size = 1)
# })
#
# cowplot::plot_grid(plotlist = plots, ncol = 1)
## ----fig.width=12, fig.height=15.75, eval=FALSE-------------------------------
# plots <- lapply(BC_XeniumList, function(seu) {
# FeaturePlot(
# seu,
# reduction = "pos", features = "CAESARconf", pt.size = 1,
# cols = c("blue", "lightgrey"), min.cutoff = 0.0, max.cutoff = 1.0
# )
# })
#
# cowplot::plot_grid(plotlist = plots, ncol = 1)
## ----eval=FALSE---------------------------------------------------------------
# sg_List <- lapply(BC_XeniumList, find.sig.genes)
#
# str(sg_List)
## ----eval=FALSE---------------------------------------------------------------
# dist_names <- paste0("dist_", gsub("-|/| ", ".", setdiff(celltypes, "unassigned")))
#
# distList <- lapply(BC_XeniumList, function(seu) {
# as.matrix(seu@meta.data[, dist_names])
# })
#
# seuInt <- CAESAR.RUV(BC_XeniumList, distList, verbose = FALSE, species = "human")
#
# metaInt <- Reduce(rbind, lapply(BC_XeniumList, function(seu) {
# as.matrix(seu@meta.data[, "CAESARunasg", drop = FALSE])
# })) %>% as.data.frame()
# colnames(metaInt) <- "CAESARunasg"
# row.names(metaInt) <- colnames(seuInt)
# seuInt <- AddMetaData(seuInt, metaInt, col.name = colnames(metaInt))
# Idents(seuInt) <- factor(seuInt$CAESARunasg, levels = names(cols))
#
# print(seuInt)
## ----fig.width=12, fig.height=5, eval=FALSE-----------------------------------
# # obtain the top three signature genes
# celltypes_plot <- setdiff(celltypes, "unassigned")
# top3sgs <- Intsg(sg_List, 3)[celltypes_plot]
# print(top3sgs)
#
# sg_features <- unname(unlist(top3sgs))
#
# DotPlot(
# seuInt,
# idents = celltypes_plot, col.min = -1, col.max = 2, dot.scale = 7,
# features = sg_features, scale.min = 0, scale.max = 30
# ) + theme(axis.text.x = element_text(face = "italic", angle = 45, vjust = 1, hjust = 1))
## ----fig.width=12, fig.height=15.75, eval=FALSE-------------------------------
# # calculate coumap
# BC_XeniumList <- lapply(
# BC_XeniumList, CoUMAP, reduction = "caesar",
# reduction.name = "caesarUMAP", gene.set = sg_features
# )
#
# df_gene_label <- data.frame(
# gene = unlist(top3sgs),
# label = rep(names(top3sgs), each = 3)
# )
#
# plots <- lapply(BC_XeniumList, function(seu) {
# CoUMAP.plot(
# seu, reduction = "caesarUMAP", gene_txtdata = df_gene_label,
# cols = c("gene" = "#000000", cols)
# )
# })
#
# cowplot::plot_grid(plotlist = plots, ncol = 1)
## ----eval=FALSE---------------------------------------------------------------
# # pathway_list <- msigdbr(species = "Homo sapiens", category = "C5", subcategory = "GO:BP") %>%
# # group_by(gs_name) %>%
# # summarise(genes = list(intersect(gene_symbol, common_genes))) %>%
# # tibble::deframe()
# # n.pathway_list <- sapply(pathway_list, length)
# # pathway_list <- pathway_list[n.pathway_list >= 5]
#
# # --------------------------------------------
# # To avoid potential issues caused by differences in operating systems,
# # R package versions, and other uncontrollable factors across environments,
# # we pre-generated the 'pathway_list' object using the code above
# # --------------------------------------------
#
# githubURL <- "https://github.com/XiaoZhangryy/CAESAR.Suite/blob/master/vignettes_data/pathway4BC.rda?raw=true"
# pathway4BC_file <- file.path(tempdir(), "pathway4BC.rda")
# download.file(githubURL, pathway4BC_file, mode='wb')
# load(pathway4BC_file)
#
# print(head(pathway_list))
## ----eval=FALSE---------------------------------------------------------------
# seuBC1 <- BC_XeniumList[[1]]
#
# df_enrich <- CAESAR.enrich.pathway(
# seuBC1, pathway.list = pathway_list, reduction = "caesar"
# )
#
# # obtain significant enriched pathways
# pathways <- pathway_list[df_enrich$asy.wei.pval.adj < 0.05]
## ----eval=FALSE---------------------------------------------------------------
# enrich.score.BC1 <- CAESAR.enrich.score(seuBC1, pathways)
#
# dep.pvals <- CAESAR.CTDEP(seuBC1, enrich.score.BC1)
# head(dep.pvals)
## ----fig.width=12, fig.height=7.5, eval=FALSE---------------------------------
# seuBC1 <- AddMetaData(seuBC1, as.data.frame(enrich.score.BC1))
#
# pathway <- "GOBP_VASCULATURE_DEVELOPMENT"
# FeaturePlot(seuBC1, features = pathway, reduction = "pos") +
# scale_color_gradientn(
# colors = c("#fff7f3", "#fcc5c0", "#f768a1", "#ae017e", "#49006a"),
# values = scales::rescale(seq(0, 1, 0.25)),
# limits = c(0, 1)
# ) +
# theme(
# legend.position = "right",
# legend.justification = "center",
# legend.box = "vertical"
# )
## -----------------------------------------------------------------------------
sessionInfo()
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.