Nothing
#' @title Covariates-based Clustering.
#' @description \emph{Covariates-based Clustering} is a spectral clustering method that focuses
#' solely on the covariates structure of a network. It employs \code{k-means} on the first
#' \eqn{K} leading eigenvectors of the weighted cogariates matrix of a graph, with each
#' eigenvector normalized to have unit magnitude.
#' @param Adj A 0/1 adjacency matrix.
#' @param tau An optional tuning parameter, the default value is the mean of adajacency matrix.
#' @param K A positive integer, indicating the number of underlying communities in
#' graph \code{Adj}.
#' @param itermax \code{k-means} parameter, indicating the maximum number of
#' iterations allowed. The default value is 100.
#' @param startn \code{k-means} parameter. If centers is a number, how many
#' random sets should be chosen? The default value is 10.
#' @return A label vector.
#'
#' @importFrom stats kmeans runif
#' @examples
#'
#' # Simulate the Network
#' n = 10; K = 2;
#' theta = 0.4 + (0.45-0.05)*(seq(1:n)/n)^2; Theta = diag(theta);
#' P = matrix(c(0.8, 0.2, 0.2, 0.8), byrow = TRUE, nrow = K)
#' set.seed(2022)
#' l = sample(1:K, n, replace=TRUE); # node labels
#' Pi = matrix(0, n, K) # label matrix
#' for (k in 1:K){
#' Pi[l == k, k] = 1
#' }
#' Omega = Theta %*% Pi %*% P %*% t(Pi) %*% Theta;
#' Adj = matrix(runif(n*n, 0, 1), nrow = n);
#' Adj = Omega - Adj;
#' Adj = 1*(Adj >= 0)
#' diag(Adj) = 0
#' Adj[lower.tri(Adj)] = t(Adj)[lower.tri(Adj)]
#' Cov_based(Adj, 2)
#' @export
Cov_based <- function(Adj, K, tau = NULL, itermax = NULL, startn = NULL){
if(!isSymmetric(Adj)) stop("Error! Adj is not symmetric!")
if(K > dim(Adj)[1]) stop("Error! More communities than nodes!")
if(K %% 1 != 0) stop("Error! K is not an integer!")
if(K <= 0) stop("Error! Nonpositive K!")
if(is.null(tau)) tau = mean(Adj);
n <- dim(Adj)[1]
A_tau = Adj + tau * matrix(1, n, n)/n
s = rowSums(A_tau)
s = s^(-1/2)
S = diag(s)
Z = S %*% A_tau %*% S
#D <- diag(rowSums(A_tau))
#L_tau <- (D + tau*J/n)^{-1/2} %*% Adj %*% (D + tau*J/n)^{-1/2}
#L <- (D + tau*diag(n))^{-1/2} %*% Adj %*% (D + tau*diag(n))^{-1/2}
g.eigen <- eigen(Z)
R = g.eigen$vectors
R = R[, 1: K]
R <- t(apply(R, 1, function(x) x/sqrt(sum(x^2))))
# apply Kmeans to assign nodes into communities
if(!is.null(itermax) & !is.null(startn)){
result = kmeans(R, K, iter.max = itermax, nstart = startn) #apply kmeans on ratio matrix
}
if(!is.null(itermax) & is.null(startn)){
result = kmeans(R, K, iter.max = itermax, nstart = 10) #apply kmeans on ratio matrix
}
if(is.null(itermax) & !is.null(startn)){
result = kmeans(R, K, iter.max = 100, nstart = startn) #apply kmeans on ratio matrix
}
else{
result = kmeans(R, K, iter.max = 100, nstart = 10) #apply kmeans on ratio matrix
}
est = as.factor(result$cluster)
return(est)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.