Nothing
#' CDSeq: A package for complete deconvolution using sequencing data
#'
#' \code{CDSeq-R-package} takes bulk RNA-seq data as input and simultaneously returns estimates of both cell-type-specific gene expression profiles and sample-specific cell-type proportions.
#' @author Kai Kang, David Huang, \email{kangkai0714@@gmail.com}
#' @references \url{https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1007510}
#' @section Reduce-Recover:
#' CDSeq uses reduce-recovery strategy and CPU parallel computing to speed up the deconvolution.
#' @section Hyperparameter estimation:
#' Estimate hyperparameter for cell-type-specific GEPs (i.e. beta) using reference profile when cell_type_number is scalar.
#' @section Estimating number of cell type:
#' Estimate number of cell types when cell_type_number is a vector of integers.
#' @section Partition on input bulk RNA-seq data:
#' When block_number (number of partition on the bulk RNASeq data) is 1, whole bulk_data will be used. GEP is not from reduce-recovery.
#' @docType package
#' @import Rcpp MASS foreach doParallel dirmult RcppThread iterators parallel
#' @importFrom Rcpp evalCpp
#' @useDynLib CDSeq
#' @name CDSeq-R-package
NULL
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.