sar | R Documentation |
sar
computes quasi-maximum likelihood estimators for linear-in-mean models with social interactions (see Lee, 2004 and Lee et al., 2010).
sar(
formula,
Glist,
lambda0 = NULL,
fixed.effects = FALSE,
optimizer = "optim",
opt.ctr = list(),
print = TRUE,
cov = TRUE,
cinfo = TRUE,
data
)
formula |
a class object formula: a symbolic description of the model. |
Glist |
The network matrix. For networks consisting of multiple subnets, |
lambda0 |
an optional starting value of |
fixed.effects |
a Boolean indicating whether group heterogeneity must be included as fixed effects. |
optimizer |
is either |
opt.ctr |
list of arguments of nlm or optim (the one set in |
print |
a Boolean indicating if the estimate should be printed at each step. |
cov |
a Boolean indicating if the covariance should be computed. |
cinfo |
a Boolean indicating whether information is complete ( |
data |
an optional data frame, list or environment (or object coercible by as.data.frame to a data frame) containing the variables
in the model. If not found in data, the variables are taken from |
For a complete information model, the outcome y_i
is defined as:
y_i = \lambda \bar{y}_i + \mathbf{z}_i'\Gamma + \epsilon_i,
where \bar{y}_i
is the average of y
among peers,
\mathbf{z}_i
is a vector of control variables,
and \epsilon_i \sim N(0, \sigma^2)
.
In the case of incomplete information models with rational expectations, y_i
is defined as:
y_i = \lambda E(\bar{y}_i) + \mathbf{z}_i'\Gamma + \epsilon_i.
A list consisting of:
info |
list of general information on the model. |
estimate |
Maximum Likelihood (ML) estimator. |
cov |
covariance matrix of the estimate. |
details |
outputs as returned by the optimizer. |
Lee, L. F. (2004). Asymptotic distributions of quasi-maximum likelihood estimators for spatial autoregressive models. Econometrica, 72(6), 1899-1925, \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1111/j.1468-0262.2004.00558.x")}.
Lee, L. F., Liu, X., & Lin, X. (2010). Specification and estimation of social interaction models with network structures. The Econometrics Journal, 13(2), 145-176, \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1111/j.1368-423X.2010.00310.x")}
sart
, cdnet
, simsar
.
# Groups' size
set.seed(123)
M <- 5 # Number of sub-groups
nvec <- round(runif(M, 100, 1000))
n <- sum(nvec)
# Parameters
lambda <- 0.4
Gamma <- c(2, -1.9, 0.8, 1.5, -1.2)
sigma <- 1.5
theta <- c(lambda, Gamma, sigma)
# X
X <- cbind(rnorm(n, 1, 1), rexp(n, 0.4))
# Network
G <- list()
for (m in 1:M) {
nm <- nvec[m]
Gm <- matrix(0, nm, nm)
max_d <- 30
for (i in 1:nm) {
tmp <- sample((1:nm)[-i], sample(0:max_d, 1))
Gm[i, tmp] <- 1
}
rs <- rowSums(Gm); rs[rs == 0] <- 1
Gm <- Gm/rs
G[[m]] <- Gm
}
# data
data <- data.frame(X, peer.avg(G, cbind(x1 = X[,1], x2 = X[,2])))
colnames(data) <- c("x1", "x2", "gx1", "gx2")
ytmp <- simsar(formula = ~ x1 + x2 + gx1 + gx2, Glist = G,
theta = theta, data = data)
data$y <- ytmp$y
out <- sar(formula = y ~ x1 + x2 + + gx1 + gx2, Glist = G,
optimizer = "optim", data = data)
summary(out)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.