simsar | R Documentation |
simsar
simulates continuous variables under linear-in-mean models with social interactions, following the specifications described
in Lee (2004) and Lee et al. (2010). The model incorporates peer interactions, where the value of an individual’s outcome depends
not only on their own characteristics but also on the average characteristics of their peers in the network.
simsar(formula, Glist, theta, cinfo = TRUE, data)
formula |
A symbolic description of the model, passed as a class object of type formula.
The formula must specify the endogenous variable and control variables, for example:
|
Glist |
A list of network adjacency matrices representing multiple subnets. The |
theta |
A numeric vector defining the true values of the model parameters |
cinfo |
A Boolean flag indicating whether the information is complete ( |
data |
An optional data frame, list, or environment (or an object coercible by as.data.frame to a data frame) containing the variables in the model. If not provided, the variables are taken from the environment of the function call. |
In the complete information model, the outcome y_i
for individual i
is defined as:
y_i = \lambda \bar{y}_i + \mathbf{z}_i'\Gamma + \epsilon_i,
where \bar{y}_i
represents the average outcome y
among individual i
's peers,
\mathbf{z}_i
is a vector of control variables, and \epsilon_i \sim N(0, \sigma^2)
is the error term.
In the case of incomplete information models with rational expectations, the outcome y_i
is defined as:
y_i = \lambda E(\bar{y}_i) + \mathbf{z}_i'\Gamma + \epsilon_i,
where E(\bar{y}_i)
is the expected average outcome of i
's peers, as perceived by individual i
.
A list containing the following elements:
y |
the observed count data. |
Gy |
the average of y among friends. |
Lee, L. F. (2004). Asymptotic distributions of quasi-maximum likelihood estimators for spatial autoregressive models. Econometrica, 72(6), 1899-1925, \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1111/j.1468-0262.2004.00558.x")}.
Lee, L. F., Liu, X., & Lin, X. (2010). Specification and estimation of social interaction models with network structures. The Econometrics Journal, 13(2), 145-176, \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1111/j.1368-423X.2010.00310.x")}
sar
, simsart
, simcdnet
.
# Groups' size
set.seed(123)
M <- 5 # Number of sub-groups
nvec <- round(runif(M, 100, 1000))
n <- sum(nvec)
# Parameters
lambda <- 0.4
Gamma <- c(2, -1.9, 0.8, 1.5, -1.2)
sigma <- 1.5
theta <- c(lambda, Gamma, sigma)
# X
X <- cbind(rnorm(n, 1, 1), rexp(n, 0.4))
# Network
G <- list()
for (m in 1:M) {
nm <- nvec[m]
Gm <- matrix(0, nm, nm)
max_d <- 30
for (i in 1:nm) {
tmp <- sample((1:nm)[-i], sample(0:max_d, 1))
Gm[i, tmp] <- 1
}
rs <- rowSums(Gm); rs[rs == 0] <- 1
Gm <- Gm/rs
G[[m]] <- Gm
}
# data
data <- data.frame(X, peer.avg(G, cbind(x1 = X[,1], x2 = X[,2])))
colnames(data) <- c("x1", "x2", "gx1", "gx2")
ytmp <- simsar(formula = ~ x1 + x2 + gx1 + gx2, Glist = G,
theta = theta, data = data)
y <- ytmp$y
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.