Each of the reference classes used as components in the CIDnetworks methodology.

1 2 3 4 5 6 7 8 9 10 11 12 |

`...` |
Arguments passed to the respective classes. |

`cov.type` |
Specifies the type of covariate effect. Edge specifies Edge-level covariate effects. |

Each of these functions can serve as a subcomponent in the main CIDnetwork class object. Information on the nodes, edge list, and so forth will be passed automatically by any routine creating a CID object. Options are generally provided by default. Arguments for each class:

BETA: required: (nothing). Parameters: intercept.sr.

EdgeCOV: required: covariates (matrix). Parameters: Corresponding coefficient vector coef.cov.

SenderCOV: required: covariates (vector of length n.nodes). Parameters: Corresponding coefficient vector coef.cov.

ReceiverCOV: required: covariates (vector of length n.nodes). Parameters: Corresponding coefficient vector coef.cov.

SendRecCOV: required: covariates (vector of length n.nodes). Parameters: Corresponding coefficient vector coef.cov.

IdenticalCOV: required: covariates (vector of length n.nodes). Parameters: Corresponding coefficient vector coef.cov.

HBM: required: n.groups (single value). Parameters: block.value, membership (for nodes to blocks), tree.parent (for blocks).

LSM: required: dimension (single value). Parameters: latent.space.pos.

LVM: required: dimension (single value). Parameters: latent.space.pos.

MMSBM: required: n.groups (single value). Parameters: b.vector, membership.edge, membership.node.

SBM: required: n.groups (single value). Parameters: b.vector, membership.

SR: required: (nothing). Parameters: intercept.sr.

Each expression yields a Reference Class object for the respective submodel. If generate=TRUE, it will produce an outcome value for that class depending on its specific properties.

A.C. Thomas <act@acthomas.ca>

Questions? Problems? Suggestions? Tweet to @rdrrHQ or email at ian@mutexlabs.com.

All documentation is copyright its authors; we didn't write any of that.