CLME: Constrained Inference for Linear Mixed Effects Models

Estimation and inference for linear models where some or all of the fixed-effects coefficients are subject to order restrictions. This package uses the robust residual bootstrap methodology for inference, and can handle some structure in the residual variance matrix.

AuthorCasey M. Jelsema, Shyamal D. Peddada
Date of publication2016-11-08 00:25:41
MaintainerCasey M. Jelsema <>

View on CRAN

Man pages

AIC.clme: Akaike information criterion

as.clme: Constructor method for objects S3 class clme

BIC.clme: Bayesian information criterion

clme: Constrained Inference for Linear Mixed Effects Models

clme_em: Constrained EM algorithm for linear fixed or mixed effects...

CLME-package: Constrained inference for linear mixed models.

clme_resids: Computes various types of residuals

confint: Individual confidence intervals

create.constraints: Generate common order constraints

fibroid: Fibroid Growth Study

fixef.clme: Extract fixed effects

formula.clme: Extract formula

logLik.clme: Log-likelihood

lrt.stat: Likelihood ratio type statistic (global)

minque: MINQUE Algorithm

model.frame.clme: Extracts the model frame

model.matrix.clme: Extract the model design matrix.

model_terms_clme: Create model matrices for 'clme'

nobs.clme: Number of observations

plot.clme: S3 method to plot objects of class 'clme'

plot.summary.clme: S3 method to plot objects of class 'clme'

print.clme: Printout of fitted object.

print.summary.clme: S3 method to print a summary for objects of class 'clme'

print.varcorr_clme: Printout for variance components

ranef: Extract random effects

ranef.clme: Extract random effects

rat.blood: Experiment on mice

resid_boot: Obtain Residual Bootstrap

residuals.clme: Various types of residuals

shiny_clme: Shiny GUI for CLME

sigma.clme: Residual variance components

sigma.summary.clme: Residual variance components

summary.clme: Produce summary values for objects of class 'clme'

VarCorr: Variance components

vcov.clme: Variance-covariance matrix

w.stat: Williams' Type Test Statistic.

Questions? Problems? Suggestions? or email at

All documentation is copyright its authors; we didn't write any of that.