gewekeParams | R Documentation |
This function creates an object that summarizes the Geweke convergence diagnostic.
gewekeParams( res, params = c("w", "xi", "xi0", "psi", "G", "E", "eta"), frac1 = 0.1, frac2 = 0.5, probs = c(0.025, 0.975) )
res |
An object of class |
params |
A character vector naming the parameters to compute the Geweke diagnostic for. |
frac1 |
Double, fraction to use from beginning of chain. |
frac2 |
Double, fraction to use from end of chain. |
probs |
A vector of 2 doubles, probabilities denoting the limits of a confidence interval for the convergence diagnostic. |
An gewekeParamsCOMIX
object which is a named list,
with a named element for each requested parameter. Each element is a data
frame that includes the Geweke diagnostic and result of a stationarity test
for the parameter.
library(COMIX) # Number of observations for each sample (row) and cluster (column): njk <- matrix( c( 150, 300, 250, 200 ), nrow = 2, byrow = TRUE ) # Dimension of data: p <- 3 # Scale and skew parameters for first cluster: Sigma1 <- matrix(0.5, nrow = p, ncol = p) + diag(0.5, nrow = p) alpha1 <- rep(0, p) alpha1[1] <- -5 # location parameter for first cluster in first sample: xi11 <- rep(0, p) # location parameter for first cluster in second sample (aligned with first): xi21 <- rep(0, p) # Scale and skew parameters for second cluster: Sigma2 <- matrix(-1/3, nrow = p, ncol = p) + diag(1 + 1/3, nrow = p) alpha2 <- rep(0, p) alpha2[2] <- 5 # location parameter for second cluster in first sample: xi12 <- rep(3, p) # location parameter for second cluster in second sample (misaligned with first): xi22 <- rep(4, p) # Sample data: set.seed(1) Y <- rbind( sn::rmsn(njk[1, 1], xi = xi11, Omega = Sigma1, alpha = alpha1), sn::rmsn(njk[1, 2], xi = xi12, Omega = Sigma2, alpha = alpha2), sn::rmsn(njk[2, 1], xi = xi21, Omega = Sigma1, alpha = alpha1), sn::rmsn(njk[2, 2], xi = xi22, Omega = Sigma2, alpha = alpha2) ) C <- c(rep(1, rowSums(njk)[1]), rep(2, rowSums(njk)[2])) prior <- list(zeta = 1, K = 10) pmc <- list(naprt = 5, nburn = 200, nsave = 200) # Reasonable usage pmc <- list(naprt = 5, nburn = 2, nsave = 5) # Minimal usage for documentation # Fit the model: res <- comix(Y, C, pmc = pmc, prior = prior) # Relabel to resolve potential label switching issues: res_relab <- relabelChain(res) effssz <- effectiveSampleSize(res_relab, "w") # Or: tidy_chain <- tidyChain(res_relab, "w") gwk <- gewekeParams(tidy_chain, "w") # (see vignette for a more detailed example)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.