relabelChain | R Documentation |
This function relabels the chain to avoid label switching issues.
relabelChain(res)
res |
An object of class COMIX. |
An object of class COMIX where res$chain$t
is replaced with the
new labels.
library(COMIX) # Number of observations for each sample (row) and cluster (column): njk <- matrix( c( 150, 300, 250, 200 ), nrow = 2, byrow = TRUE ) # Dimension of data: p <- 3 # Scale and skew parameters for first cluster: Sigma1 <- matrix(0.5, nrow = p, ncol = p) + diag(0.5, nrow = p) alpha1 <- rep(0, p) alpha1[1] <- -5 # location parameter for first cluster in first sample: xi11 <- rep(0, p) # location parameter for first cluster in second sample (aligned with first): xi21 <- rep(0, p) # Scale and skew parameters for second cluster: Sigma2 <- matrix(-1/3, nrow = p, ncol = p) + diag(1 + 1/3, nrow = p) alpha2 <- rep(0, p) alpha2[2] <- 5 # location parameter for second cluster in first sample: xi12 <- rep(3, p) # location parameter for second cluster in second sample (misaligned with first): xi22 <- rep(4, p) # Sample data: set.seed(1) Y <- rbind( sn::rmsn(njk[1, 1], xi = xi11, Omega = Sigma1, alpha = alpha1), sn::rmsn(njk[1, 2], xi = xi12, Omega = Sigma2, alpha = alpha2), sn::rmsn(njk[2, 1], xi = xi21, Omega = Sigma1, alpha = alpha1), sn::rmsn(njk[2, 2], xi = xi22, Omega = Sigma2, alpha = alpha2) ) C <- c(rep(1, rowSums(njk)[1]), rep(2, rowSums(njk)[2])) prior <- list(zeta = 1, K = 10) pmc <- list(naprt = 5, nburn = 200, nsave = 200) # Reasonable usage pmc <- list(naprt = 5, nburn = 2, nsave = 5) # Minimal usage for documentation # Fit the model: res <- comix(Y, C, pmc = pmc, prior = prior) # Relabel to resolve potential label switching issues: res_relab <- relabelChain(res) # Generate calibrated data: cal <- calibrateNoDist(res_relab) # Compare raw and calibrated data: (see plot in vignette) # par(mfrow=c(1, 2)) # plot(Y, col = C, xlim = range(Y[,1]), ylim = range(Y[,2]) ) # Get posterior estimates for the model parameters: res_summary <- summarizeChain(res_relab) # Check for instance, the cluster assignment labels: table(res_summary$t) # Indeed the same as colSums(njk) # Or examine the skewness parameter for the non-trivial clusters: res_summary$alpha[ , unique(res_summary$t)] # And compare those to cbind(alpha1, alpha2) # (see vignette for a more detailed example)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.