Nothing
#' @title
#' Estimate the Individual Treatment Effect (ITE) using Bayesian Additive
#' Regression Trees (BART)
#'
#' @description
#' Estimates the Individual Treatment Effect using Bayesian Additive Regression
#' Trees given a response vector, a treatment vector, and a features matrix.
#'
#' @param y An observed response vector.
#' @param z A treatment vector.
#' @param X A features matrix.
#' @param learner_ps Method for the estimation of the propensity score.
#'
#' @return A list of ITE estimates.
#'
#' @note The number of samples and the number of burn are set by default equal
#' to 500.
#'
#' @keywords internal
#'
estimate_ite_bart <- function(y, z, X, learner_ps) {
logger::log_trace("learner_ps: '{learner_ps}' was selected.")
if (!is.null(learner_ps)) {
est_ps <- estimate_ps(z, X, learner_ps)
X <- cbind(X, est_ps)
}
n_sample <- 500
n_burn <- 500
logger::log_trace("In bartCause::bartc command n.samples: {n_sample} ",
"and n.burn: {n_burn} were used.")
bart_fit <- bartCause::bartc(as.matrix(y), as.matrix(z), as.matrix(X),
n.samples = n_sample, n.burn = n_burn)
pd_ite <- bartCause::extract(bart_fit, type = "ite")
ite <- apply(pd_ite, 2, mean)
return(ite)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.