Nothing
## ----include = FALSE----------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
## ----warning=FALSE, eval=FALSE------------------------------------------------
# library(CRE)
#
# # Generate sample data
# set.seed(1358)
# dataset <- generate_cre_dataset(n = 1000,
# rho = 0,
# n_rules = 2,
# p = 10,
# effect_size = 2,
# binary_covariates = TRUE,
# binary_outcome = FALSE,
# confounding = "no")
# y <- dataset[["y"]]
# z <- dataset[["z"]]
# X <- dataset[["X"]]
#
# method_params <- list(ratio_dis = 0.5,
# ite_method = "aipw",
# learner_ps = "SL.xgboost",
# learner_y = "SL.xgboost",
# offset = NULL)
#
# hyper_params <- list(intervention_vars = NULL,
# ntrees = 20,
# node_size = 20,
# max_rules = 50,
# max_depth = 3,
# t_decay = 0.025,
# t_ext = 0.01,
# t_corr = 1,
# t_pvalue = 0.05,
# stability_selection = "vanilla",
# cutoff = 0.6,
# pfer = 1,
# B = 10,
# subsample = 0.5)
#
# # linreg CATE estimation with aipw ITE estimation
# cre_results <- cre(y, z, X, method_params, hyper_params)
# summary(cre_results)
# plot(cre_results)
# ite_pred <- predict(cre_results, X)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.