Description Usage Arguments Details Value Author(s) See Also Examples
This convenience function is provided to facilitate extracting subscales from a single set of item responses.
1 2 |
items |
The item response (scored or not) |
scales |
A design matrix, with items represented in rows and separate subscales represented in columns. An item may appear in more than one subscale. |
scale.names |
Optional vector of names for the subscales |
score.items |
If responses are not scored, they may be scored using score.items=TRUE (key must be provided) |
check.reliability |
If check.reliability=TRUE, the reliability for each subscale will be calculted |
key |
Optional key, required only if score.scales=TRUE. |
This function provides an easy way to create new datasets from a single set of item responses. This function is also a front end for score and reliability, enabling the item responses to be partitioned into separate scales, scored, and reliability analyses performed using this one function.
A list is returned. Results for each subscale (i.e., column in the scales matrix) are provided as sparate objects in that list.
score |
Each examinee's score on the associated subscale |
reliablity |
Reliability results (if requested) for the associated subscale |
scored |
The scored item responses (if required) for each respondent for the associated subscale |
John Willse, Zhan Shu
reliability, score
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 |
You will find additional options and better formatting using itemAnalysis().
You will find additional options and better formatting using itemAnalysis().
$T1
$T1$score
P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16
0 6 1 5 5 2 3 6 8 4 7 3 7 7 10 3
P17 P18 P19 P20 P21 P22 P23 P24 P25 P26 P27 P28 P29 P30 P31 P32
4 2 6 4 7 3 5 5 5 2 2 3 5 3 5 5
P33 P34 P35 P36 P37 P38 P39 P40 P41 P42 P43 P44 P45 P46 P47 P48
2 3 6 2 6 5 5 6 3 4 5 4 4 5 10 9
P49 P50 P51 P52 P53 P54 P55 P56 P57 P58 P59 P60 P61 P62 P63 P64
6 4 4 9 7 4 4 3 3 6 6 4 9 3 5 7
P65 P66 P67 P68 P69 P70 P71 P72 P73 P74 P75 P76 P77 P78 P79 P80
2 3 1 10 10 10 4 4 5 4 7 5 7 5 7 10
P81 P82 P83 P84 P85 P86 P87 P88 P89 P90 P91 P92 P93 P94 P95 P96
8 7 4 1 4 10 6 7 10 8 4 3 2 5 3 8
P97 P98 P99 P100
8 8 6 8
$T1$reliability
Number of Items
10
Number of Examinees
100
Coefficient Alpha
0.677
$T1$scored
i1 i2 i3 i4 i5 i6 i7 i8 i9 i10
1 0 0 0 0 0 0 0 0 0 0
2 0 0 1 1 0 0 1 1 1 1
3 0 0 0 1 0 0 0 0 0 0
4 0 1 0 1 1 1 0 0 1 0
5 0 0 1 1 0 1 1 1 0 0
6 0 0 0 0 0 1 0 0 0 1
7 0 0 0 0 0 1 1 1 0 0
8 0 1 1 1 0 1 1 0 0 1
9 1 0 1 1 1 1 1 1 0 1
10 0 1 1 0 0 0 1 0 0 1
11 1 0 0 0 1 1 1 1 1 1
12 0 0 1 1 0 1 0 0 0 0
13 1 1 0 0 1 1 1 1 0 1
14 1 1 0 1 0 1 1 1 1 0
15 1 1 1 1 1 1 1 1 1 1
16 0 1 0 0 0 0 1 0 0 1
17 1 0 1 0 1 0 0 0 0 1
18 0 0 0 0 0 1 1 0 0 0
19 1 0 1 0 1 0 1 1 1 0
20 0 1 1 1 0 0 0 0 1 0
21 1 1 1 1 0 1 1 0 0 1
22 0 0 0 0 0 1 1 0 1 0
23 0 1 0 0 0 0 1 1 1 1
24 0 1 1 0 0 0 1 1 0 1
25 1 0 0 0 0 1 1 1 0 1
26 0 0 1 0 0 1 0 0 0 0
27 0 0 0 0 0 0 1 0 0 1
28 1 1 0 0 0 1 0 0 0 0
29 1 0 0 0 1 1 1 0 1 0
30 0 0 0 0 1 1 0 1 0 0
31 1 1 0 0 0 1 1 0 0 1
32 0 0 1 0 1 1 0 0 1 1
33 0 0 1 0 0 0 0 0 0 1
34 1 0 0 0 0 1 0 1 0 0
35 0 1 0 0 1 1 1 1 0 1
36 0 0 0 0 0 1 0 1 0 0
37 1 1 1 0 0 1 1 1 0 0
38 1 1 0 0 0 1 1 1 0 0
39 0 1 0 0 0 1 1 1 0 1
40 1 1 1 0 1 1 1 0 0 0
41 0 1 0 0 0 0 0 0 1 1
42 0 0 0 1 0 1 0 1 0 1
43 0 0 0 0 0 1 1 1 1 1
44 0 0 1 0 0 1 1 1 0 0
45 1 0 0 0 0 1 1 0 0 1
46 1 0 0 0 0 1 1 1 1 0
47 1 1 1 1 1 1 1 1 1 1
48 1 1 1 1 0 1 1 1 1 1
49 1 1 0 0 0 1 1 1 1 0
50 0 0 1 0 0 1 1 1 0 0
51 0 0 1 0 0 1 1 0 0 1
52 1 1 0 1 1 1 1 1 1 1
53 1 1 0 1 1 1 1 0 0 1
54 0 0 1 1 0 1 0 1 0 0
55 0 1 1 0 0 1 1 0 0 0
56 0 0 0 1 0 1 1 0 0 0
57 0 0 1 0 0 0 1 1 0 0
58 0 0 1 0 1 1 1 0 1 1
59 1 1 1 0 0 1 1 0 0 1
60 0 0 0 0 0 1 1 0 1 1
61 1 1 1 1 1 1 1 1 0 1
62 0 0 1 0 0 0 1 1 0 0
63 1 1 1 0 0 1 1 0 0 0
64 1 1 1 0 0 1 1 1 0 1
65 0 0 1 0 0 1 0 0 0 0
66 0 1 0 0 1 0 0 1 0 0
67 0 0 0 0 0 1 0 0 0 0
68 1 1 1 1 1 1 1 1 1 1
69 1 1 1 1 1 1 1 1 1 1
70 1 1 1 1 1 1 1 1 1 1
71 0 1 0 0 1 1 0 1 0 0
72 0 1 1 0 0 0 1 1 0 0
73 1 0 1 0 0 1 1 1 0 0
74 0 1 0 1 0 1 0 0 0 1
75 1 1 1 1 1 1 1 0 0 0
76 1 1 0 0 1 1 0 0 0 1
77 1 1 1 1 0 1 1 1 0 0
78 0 1 1 0 0 1 1 1 0 0
79 1 1 0 1 0 1 1 0 1 1
80 1 1 1 1 1 1 1 1 1 1
81 1 1 1 0 1 1 1 1 1 0
82 0 1 1 0 1 1 1 1 1 0
83 0 1 1 1 0 0 0 0 0 1
84 0 0 0 0 0 1 0 0 0 0
85 0 0 1 0 0 1 1 1 0 0
86 1 1 1 1 1 1 1 1 1 1
87 0 1 1 0 0 1 1 1 1 0
88 0 1 0 1 1 1 1 1 0 1
89 1 1 1 1 1 1 1 1 1 1
90 1 1 1 1 1 1 1 1 0 0
91 1 0 1 0 1 1 0 0 0 0
92 1 0 0 0 0 1 0 0 0 1
93 0 0 1 0 0 1 0 0 0 0
94 1 0 0 0 0 1 1 1 0 1
95 0 0 0 0 1 1 0 0 0 1
96 1 1 1 1 1 1 1 1 0 0
97 1 1 0 1 1 1 1 1 0 1
98 1 1 1 1 0 1 1 1 0 1
99 0 0 1 0 1 1 1 1 0 1
100 1 0 1 1 1 1 1 1 0 1
$T2
$T2$score
P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16
1 4 1 2 8 4 1 7 5 4 7 1 7 5 9 3
P17 P18 P19 P20 P21 P22 P23 P24 P25 P26 P27 P28 P29 P30 P31 P32
2 3 2 5 6 2 2 4 5 3 5 5 2 2 6 2
P33 P34 P35 P36 P37 P38 P39 P40 P41 P42 P43 P44 P45 P46 P47 P48
4 2 2 1 5 2 3 2 2 4 6 3 4 2 8 9
P49 P50 P51 P52 P53 P54 P55 P56 P57 P58 P59 P60 P61 P62 P63 P64
9 3 5 4 6 0 1 2 2 9 4 4 9 3 8 9
P65 P66 P67 P68 P69 P70 P71 P72 P73 P74 P75 P76 P77 P78 P79 P80
2 6 2 9 11 10 6 5 7 7 6 5 5 7 9 6
P81 P82 P83 P84 P85 P86 P87 P88 P89 P90 P91 P92 P93 P94 P95 P96
6 6 4 3 1 9 4 7 10 7 2 4 2 9 5 4
P97 P98 P99 P100
8 10 5 9
$T2$reliability
Number of Items
11
Number of Examinees
100
Coefficient Alpha
0.706
$T2$scored
i10 i11 i12 i13 i14 i15 i16 i17 i18 i19 i20
1 0 0 0 0 0 0 0 0 0 1 0
2 1 0 1 0 0 0 1 0 1 0 0
3 0 0 0 0 0 0 0 0 0 0 1
4 0 1 0 1 0 0 0 0 0 0 0
5 0 1 1 1 1 0 1 0 1 1 1
6 1 0 0 1 1 0 0 1 0 0 0
7 0 0 0 0 0 1 0 0 0 0 0
8 1 0 1 1 1 1 0 1 0 1 0
9 1 0 0 0 1 0 0 1 1 0 1
10 1 0 1 0 0 1 1 0 0 0 0
11 1 1 1 0 1 0 1 1 0 1 0
12 0 0 0 0 0 0 1 0 0 0 0
13 1 0 1 1 1 0 1 1 1 0 0
14 0 0 1 1 0 1 0 1 0 0 1
15 1 1 0 1 1 1 1 0 1 1 1
16 1 0 0 1 0 0 0 0 1 0 0
17 1 0 0 0 0 0 1 0 0 0 0
18 0 0 0 1 0 0 1 0 0 1 0
19 0 0 1 0 1 0 0 0 0 0 0
20 0 1 0 1 1 0 0 0 0 1 1
21 1 1 1 1 1 0 1 0 0 0 0
22 0 0 1 0 0 1 0 0 0 0 0
23 1 0 1 0 0 0 0 0 0 0 0
24 1 0 0 1 1 0 0 0 0 0 1
25 1 0 1 0 0 1 1 0 1 0 0
26 0 1 0 0 0 0 0 1 0 0 1
27 1 0 1 1 0 0 0 1 1 0 0
28 0 0 1 1 1 1 0 0 0 0 1
29 0 0 1 1 0 0 0 0 0 0 0
30 0 0 0 0 1 0 0 0 1 0 0
31 1 0 1 1 1 1 0 0 0 0 1
32 1 1 0 0 0 0 0 0 0 0 0
33 1 1 0 0 0 1 0 0 0 0 1
34 0 0 1 1 0 0 0 0 0 0 0
35 1 0 0 1 0 0 0 0 0 0 0
36 0 0 0 0 1 0 0 0 0 0 0
37 0 1 1 1 0 0 1 1 0 0 0
38 0 0 1 0 0 0 0 1 0 0 0
39 1 1 0 0 0 0 1 0 0 0 0
40 0 0 0 1 0 0 0 0 0 1 0
41 1 0 0 0 0 0 0 0 0 1 0
42 1 0 1 1 0 0 0 1 0 0 0
43 1 0 1 1 0 0 0 0 1 1 1
44 0 0 0 1 1 0 0 1 0 0 0
45 1 0 0 1 1 0 0 0 0 1 0
46 0 0 0 0 0 1 1 0 0 0 0
47 1 0 1 1 1 1 0 1 1 0 1
48 1 1 1 1 1 1 0 1 1 0 1
49 0 1 1 1 0 1 1 1 1 1 1
50 0 0 0 1 0 1 0 0 1 0 0
51 1 0 1 1 1 0 0 0 1 0 0
52 1 0 1 1 0 0 0 0 0 1 0
53 1 1 1 1 0 1 0 1 0 0 0
54 0 0 0 0 0 0 0 0 0 0 0
55 0 0 0 1 0 0 0 0 0 0 0
56 0 0 0 0 0 1 0 0 1 0 0
57 0 0 0 1 1 0 0 0 0 0 0
58 1 1 1 1 1 0 0 1 1 1 1
59 1 0 0 1 0 0 0 0 1 1 0
60 1 0 1 1 1 0 0 0 0 0 0
61 1 1 1 0 1 1 1 1 1 0 1
62 0 1 0 0 0 1 0 1 0 0 0
63 0 1 1 1 1 0 1 1 0 1 1
64 1 1 1 1 1 1 1 0 1 0 1
65 0 0 0 1 0 0 0 0 0 0 1
66 0 0 1 1 0 0 1 1 1 1 0
67 0 0 0 0 0 1 0 0 0 1 0
68 1 1 1 1 1 1 0 1 0 1 1
69 1 1 1 1 1 1 1 1 1 1 1
70 1 1 1 1 1 1 0 1 1 1 1
71 0 1 1 1 0 1 0 1 0 1 0
72 0 1 1 1 1 0 0 1 0 0 0
73 0 1 0 0 1 1 1 1 0 1 1
74 1 1 0 1 1 1 0 1 0 0 1
75 0 0 1 1 1 0 0 0 1 1 1
76 1 1 1 1 1 0 0 0 0 0 0
77 0 1 1 0 1 1 0 1 0 0 0
78 0 1 1 1 1 0 1 0 0 1 1
79 1 0 1 1 1 1 1 1 0 1 1
80 1 0 1 1 1 0 0 1 1 0 0
81 0 1 1 1 1 1 0 0 0 1 0
82 0 1 1 0 1 0 1 0 0 1 1
83 1 0 0 0 1 0 1 0 0 0 1
84 0 0 0 1 0 1 0 0 0 0 1
85 0 0 0 0 0 0 0 1 0 0 0
86 1 1 1 1 1 1 0 1 1 1 0
87 0 1 1 0 1 0 0 0 0 0 1
88 1 1 1 1 1 0 1 0 0 1 0
89 1 1 1 1 1 1 0 1 1 1 1
90 0 1 1 0 1 0 1 1 1 0 1
91 0 0 0 0 0 0 1 0 0 0 1
92 1 0 0 1 0 1 1 0 0 0 0
93 0 0 1 0 0 1 0 0 0 0 0
94 1 1 1 1 1 1 1 1 0 0 1
95 1 0 1 1 1 0 0 0 1 0 0
96 0 0 1 0 0 0 0 1 1 0 1
97 1 1 1 1 1 1 0 1 0 0 1
98 1 1 1 1 1 1 0 1 1 1 1
99 1 0 0 1 1 0 1 1 0 0 0
100 1 1 1 0 1 0 1 1 1 1 1
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.