logistic | R Documentation |
The elementwise logistic function, \log(1 + e^x)
.
This is a special case of log(sum(exp)) that evaluates to a vector rather than to a scalar, which is useful for logistic regression.
logistic(x)
x |
An Expression, vector, or matrix. |
An Expression representing the logistic function evaluated at the input.
set.seed(92)
n <- 20
m <- 1000
sigma <- 45
beta_true <- stats::rnorm(n)
idxs <- sample(n, size = 0.8*n, replace = FALSE)
beta_true[idxs] <- 0
X <- matrix(stats::rnorm(m*n, 0, 5), nrow = m, ncol = n)
y <- sign(X %*% beta_true + stats::rnorm(m, 0, sigma))
beta <- Variable(n)
X_sign <- apply(X, 2, function(x) { ifelse(y <= 0, -1, 1) * x })
obj <- -sum(logistic(-X[y <= 0,] %*% beta)) - sum(logistic(X[y == 1,] %*% beta))
prob <- Problem(Maximize(obj))
result <- solve(prob)
log_odds <- result$getValue(X %*% beta)
beta_res <- result$getValue(beta)
y_probs <- 1/(1 + exp(-X %*% beta_res))
log(y_probs/(1 - y_probs))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.