Description Usage Arguments Value See Also Examples
cfC_vonMises(t) evaluates the characteristic function cf(t) of the von Mises distribution (circular normal distribution) with the parameters mu in (-pi,pi) and kappa > 0 (mu and 1/kappa are analogous to mu and sigma^2, the mean and variance in the normal distribution), on a circle e.g. the interval (-pi,pi), i.e. cf(t) = besseli(t,kappa)/besseli(0,kappa) .* exp(1i*t*mu).
1 | cfC_vonMises(t, mu = 0, kappa = 1)
|
t |
numerical values (number, vector...) |
mu |
in (-pi, pi) |
kappa |
> 0 |
characteristic function cf(t) of the von Mises distribution with the parameters mu and kappa > 0
For more details see WIKIPEDIA: https://en.wikipedia.org/wiki/Von_Mises_distribution
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 | # EXAMPLE1 (CF of the uniform von Mises distribution on (-pi,pi))
t <- seq(-10, 10, length.out = 501)
plotGraf(function(t)
cfC_vonMises(t), t, title = "CF of the uniform von Mises distribution on (-pi,pi)")
# EXAMPLE2 (CF of the mixture of the von Mises distribution on (-pi,pi))
mu1 <- 0
kappa1 <- 5
mu2 <- 1
kappa2 <- 15
cf <-
function(t)
0.25 * cfC_vonMises(t, mu1, kappa1) + 0.75 * cfC_vonMises(t, mu2, kappa2)
t <- seq(-10, 10, length.out = 501)
plotGraf(cf, t, title = "CF of the mixture of the von Mises distribution")
# EXAMPLE3 (PDF/CDF of the von Mises distribution on (-pi,pi))
mu <- 0
kappa <- 5
cf <- function(t)
cfC_vonMises(t, mu, kappa)
result <- cf2DistGP(cf, xMin = -pi, xMax = pi)
angle <- result$x
radius <- result$pdf
plotPolar(angle, radius)
# EXAMPLE4 (PDF/CDF of the linear combinantion of 2 von Mises distribution on (-pi,pi))
mu1 <- 0
kappa1 <- 5
mu2 <- 1
kappa2 <- 15
cf <-
function(t)
cfC_vonMises(1 * t, mu1, kappa1) * cfC_vonMises(0.25 * t, mu2, kappa2)
result <- cf2DistGP(cf,
xMin = -pi,
xMax = pi,
isCircular = TRUE)
angle <- result$x
radius <- result$pdf
plotPolar(angle, radius)
# EXAMPLE5 (PDF/CDF of the mixture of the von Mises distribution on (0,2*pi))
mu1 <- 0
kappa1 <- 5
mu2 <- 1
kappa2 <- 15
mu3 <- pi
kappa3 <- 10
cf <-
function(t)
0.25 * cfC_vonMises(t, mu1, kappa1) + 0.25 * cfC_vonMises(t, mu2, kappa2) + 0.5 *
cfC_vonMises(t, mu3, kappa3)
result <- cf2DistGP(cf,
xMin = 0,
xMax = 2 * pi,
isCircular = TRUE)
angle <- result$x
radius <- result$pdf
plotPolar(angle, radius)
|
Warning message:
In BesselI(kappa, abs(t), TRUE) :
'zbesi(5 + 0i, nu=1e+30)' -> ierr=4: |z| or nu too large
Warning messages:
1: In BesselI(kappa, abs(t), TRUE) :
'zbesi(5 + 0i, nu=1e+30)' -> ierr=4: |z| or nu too large
2: In BesselI(kappa, abs(t), TRUE) :
'zbesi(15 + 0i, nu=2.5e+29)' -> ierr=4: |z| or nu too large
Warning messages:
1: In BesselI(kappa, abs(t), TRUE) :
'zbesi(5 + 0i, nu=1e+30)' -> ierr=4: |z| or nu too large
2: In BesselI(kappa, abs(t), TRUE) :
'zbesi(15 + 0i, nu=1e+30)' -> ierr=4: |z| or nu too large
3: In BesselI(kappa, abs(t), TRUE) :
'zbesi(10 + 0i, nu=1e+30)' -> ierr=4: |z| or nu too large
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.